Normalized defining polynomial
\( x^{20} + 25 x^{18} + 268 x^{16} + 1613 x^{14} + 5989 x^{12} + 14177 x^{10} + 21323 x^{8} + 19642 x^{6} + \cdots + 245 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[0, 10]$ |
| |
| Discriminant: |
\(99230781955913713241292800000000000\)
\(\medspace = 2^{32}\cdot 5^{11}\cdot 7^{2}\cdot 23^{4}\cdot 431^{4}\)
|
| |
| Root discriminant: | \(56.21\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(7\), \(23\), \(431\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{512}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{49}a^{18}-\frac{3}{49}a^{16}+\frac{9}{49}a^{14}-\frac{11}{49}a^{12}-\frac{24}{49}a^{10}+\frac{2}{49}a^{8}+\frac{1}{49}a^{6}+\frac{2}{7}a^{4}-\frac{15}{49}a^{2}+\frac{3}{7}$, $\frac{1}{49}a^{19}-\frac{3}{49}a^{17}+\frac{9}{49}a^{15}-\frac{11}{49}a^{13}-\frac{24}{49}a^{11}+\frac{2}{49}a^{9}+\frac{1}{49}a^{7}+\frac{2}{7}a^{5}-\frac{15}{49}a^{3}+\frac{3}{7}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{476}$, which has order $1904$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{476}$, which has order $1904$ (assuming GRH) |
| |
| Relative class number: | $1904$ (assuming GRH) |
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{6}{49}a^{18}+\frac{129}{49}a^{16}+\frac{1132}{49}a^{14}+\frac{5177}{49}a^{12}+\frac{12890}{49}a^{10}+\frac{15741}{49}a^{8}+\frac{3632}{49}a^{6}-\frac{1535}{7}a^{4}-\frac{9008}{49}a^{2}-\frac{234}{7}$, $a^{2}+2$, $\frac{12}{49}a^{18}+\frac{258}{49}a^{16}+\frac{2313}{49}a^{14}+\frac{11285}{49}a^{12}+\frac{32836}{49}a^{10}+\frac{58726}{49}a^{8}+\frac{63957}{49}a^{6}+\frac{5743}{7}a^{4}+\frac{12854}{49}a^{2}+\frac{218}{7}$, $\frac{66}{49}a^{18}+\frac{1468}{49}a^{16}+\frac{13628}{49}a^{14}+\frac{68609}{49}a^{12}+\frac{203530}{49}a^{10}+\frac{361262}{49}a^{8}+\frac{370947}{49}a^{6}+\frac{28650}{7}a^{4}+\frac{47079}{49}a^{2}+\frac{527}{7}$, $\frac{13}{49}a^{18}+\frac{255}{49}a^{16}+\frac{1979}{49}a^{14}+\frac{7550}{49}a^{12}+\frac{13408}{49}a^{10}+\frac{3015}{49}a^{8}-\frac{26937}{49}a^{6}-\frac{5868}{7}a^{4}-\frac{22392}{49}a^{2}-\frac{528}{7}$, $\frac{36}{49}a^{18}+\frac{774}{49}a^{16}+\frac{6890}{49}a^{14}+\frac{32924}{49}a^{12}+\frac{91501}{49}a^{10}+\frac{149620}{49}a^{8}+\frac{138608}{49}a^{6}+\frac{9466}{7}a^{4}+\frac{13964}{49}a^{2}+\frac{143}{7}$, $\frac{53}{49}a^{18}+\frac{1164}{49}a^{16}+\frac{10669}{49}a^{14}+\frac{53121}{49}a^{12}+\frac{156655}{49}a^{10}+\frac{279749}{49}a^{8}+\frac{296503}{49}a^{6}+\frac{24956}{7}a^{4}+\frac{49920}{49}a^{2}+\frac{754}{7}$, $\frac{12}{7}a^{18}+\frac{272}{7}a^{16}+\frac{2593}{7}a^{14}+\frac{13560}{7}a^{12}+\frac{42531}{7}a^{10}+\frac{82120}{7}a^{8}+\frac{96248}{7}a^{6}+9250a^{4}+\frac{22059}{7}a^{2}+394$, $\frac{15}{49}a^{18}+\frac{298}{49}a^{16}+\frac{2340}{49}a^{14}+\frac{8949}{49}a^{12}+\frac{15075}{49}a^{10}-\frac{2616}{49}a^{8}-\frac{50112}{49}a^{6}-\frac{10442}{7}a^{4}-\frac{40062}{49}a^{2}-\frac{886}{7}$
|
| |
| Regulator: | \( 1397389.2024 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 1397389.2024 \cdot 1904}{2\cdot\sqrt{99230781955913713241292800000000000}}\cr\approx \mathstrut & 0.40497648656 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8.(C_4\times S_5)$ (as 20T802):
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for $C_2^8.(C_4\times S_5)$ |
| Character table for $C_2^8.(C_4\times S_5)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.396520.1, 10.10.19653513800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.0.777969330534363511811735552000000000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | R | ${\href{/padicField/11.10.0.1}{10} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | R | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/padicField/53.4.0.1}{4} }^{5}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.20a1.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 36 x^{5} + 59 x^{4} + 68 x^{3} + 50 x^{2} + 24 x + 7$ | $4$ | $2$ | $20$ | $Q_8:C_2$ | $$[2, 3, \frac{7}{2}]^{2}$$ |
| 2.6.2.12a9.2 | $x^{12} + 2 x^{11} + 4 x^{10} + 4 x^{9} + 7 x^{8} + 6 x^{7} + 7 x^{6} + 8 x^{5} + 6 x^{4} + 4 x^{3} + 7 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T29 | $$[2, 2]^{12}$$ | |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.3.2.3a1.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 5.3.2.3a1.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 9 x^{2} + 18 x + 14$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(7\)
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 7.4.1.0a1.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 7.6.1.0a1.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 7.6.1.0a1.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(23\)
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.4.1.0a1.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 23.2.2.2a1.2 | $x^{4} + 42 x^{3} + 451 x^{2} + 210 x + 48$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 23.2.2.2a1.2 | $x^{4} + 42 x^{3} + 451 x^{2} + 210 x + 48$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(431\)
| $\Q_{431}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{431}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |