Properties

Label 20.0.99133055418...1808.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{10}\cdot 7^{10}\cdot 17^{11}$
Root discriminant $17.78$
Ramified primes $2, 7, 17$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T426

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 14, 65, 103, -1, -327, 493, -227, -142, 231, -76, -40, 37, -15, 13, -15, 12, -10, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 8*x^18 - 10*x^17 + 12*x^16 - 15*x^15 + 13*x^14 - 15*x^13 + 37*x^12 - 40*x^11 - 76*x^10 + 231*x^9 - 142*x^8 - 227*x^7 + 493*x^6 - 327*x^5 - x^4 + 103*x^3 + 65*x^2 + 14*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^19 + 8*x^18 - 10*x^17 + 12*x^16 - 15*x^15 + 13*x^14 - 15*x^13 + 37*x^12 - 40*x^11 - 76*x^10 + 231*x^9 - 142*x^8 - 227*x^7 + 493*x^6 - 327*x^5 - x^4 + 103*x^3 + 65*x^2 + 14*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 8 x^{18} - 10 x^{17} + 12 x^{16} - 15 x^{15} + 13 x^{14} - 15 x^{13} + 37 x^{12} - 40 x^{11} - 76 x^{10} + 231 x^{9} - 142 x^{8} - 227 x^{7} + 493 x^{6} - 327 x^{5} - x^{4} + 103 x^{3} + 65 x^{2} + 14 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9913305541837631770231808=2^{10}\cdot 7^{10}\cdot 17^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{2}{17} a^{17} - \frac{6}{17} a^{16} + \frac{4}{17} a^{15} + \frac{5}{17} a^{14} - \frac{4}{17} a^{13} - \frac{5}{17} a^{12} + \frac{8}{17} a^{11} - \frac{6}{17} a^{10} + \frac{5}{17} a^{9} + \frac{8}{17} a^{8} - \frac{4}{17} a^{7} - \frac{4}{17} a^{5} - \frac{7}{17} a^{4} + \frac{7}{17} a^{3} + \frac{2}{17} a^{2} + \frac{1}{17} a + \frac{2}{17}$, $\frac{1}{833091910013114432857} a^{19} + \frac{11449379097388344307}{833091910013114432857} a^{18} + \frac{216599140409096295053}{833091910013114432857} a^{17} - \frac{47112874462823720567}{833091910013114432857} a^{16} + \frac{230219308486876387015}{833091910013114432857} a^{15} - \frac{242665078936155757076}{833091910013114432857} a^{14} + \frac{247683748202590083774}{833091910013114432857} a^{13} + \frac{400503099442505396646}{833091910013114432857} a^{12} - \frac{107827291916157306202}{833091910013114432857} a^{11} - \frac{277721950556472145374}{833091910013114432857} a^{10} + \frac{19146138782515105294}{833091910013114432857} a^{9} + \frac{215057317339164143029}{833091910013114432857} a^{8} + \frac{2329804303526032243}{75735628183010402987} a^{7} - \frac{248602194927143251850}{833091910013114432857} a^{6} - \frac{270258063779333384082}{833091910013114432857} a^{5} - \frac{20475793765933126501}{49005406471359672521} a^{4} - \frac{378904078388854755315}{833091910013114432857} a^{3} + \frac{197576031833301852970}{833091910013114432857} a^{2} + \frac{385285315716204235273}{833091910013114432857} a - \frac{174895440744308019715}{833091910013114432857}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7434.52259447 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T426:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 100 conjugacy class representatives for t20n426 are not computed
Character table for t20n426 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 5.1.14161.1, 10.2.3409076657.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ $20$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ $20$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ $20$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.4$x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.3.2$x^{4} - 153$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$