Normalized defining polynomial
\( x^{20} - 10 x^{19} + 43 x^{18} - 102 x^{17} + 191 x^{16} - 508 x^{15} + 1404 x^{14} - 2570 x^{13} + 3299 x^{12} - 4636 x^{11} + 8490 x^{10} - 13339 x^{9} + 12442 x^{8} - 1952 x^{7} - 8883 x^{6} + 9671 x^{5} - 1445 x^{4} - 4950 x^{3} + 5546 x^{2} - 2692 x + 581 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9891814612054618806013214744409=3^{20}\cdot 11^{8}\cdot 13^{2}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{93} a^{16} - \frac{8}{93} a^{15} + \frac{14}{93} a^{14} + \frac{11}{93} a^{13} - \frac{8}{93} a^{12} - \frac{25}{93} a^{11} + \frac{1}{93} a^{10} + \frac{8}{31} a^{9} + \frac{12}{31} a^{8} + \frac{4}{93} a^{7} - \frac{26}{93} a^{6} + \frac{44}{93} a^{5} - \frac{12}{31} a^{4} + \frac{17}{93} a^{3} - \frac{35}{93} a^{2} + \frac{17}{93} a - \frac{15}{31}$, $\frac{1}{93} a^{17} + \frac{4}{31} a^{15} - \frac{1}{93} a^{14} - \frac{13}{93} a^{13} + \frac{4}{93} a^{12} - \frac{44}{93} a^{11} + \frac{32}{93} a^{10} - \frac{20}{93} a^{9} + \frac{13}{93} a^{8} + \frac{2}{31} a^{7} - \frac{3}{31} a^{6} + \frac{2}{31} a^{5} + \frac{8}{93} a^{4} - \frac{23}{93} a^{3} - \frac{46}{93} a^{2} - \frac{2}{93} a - \frac{19}{93}$, $\frac{1}{57126396205749} a^{18} - \frac{3}{19042132068583} a^{17} + \frac{13685227542}{19042132068583} a^{16} - \frac{109481820268}{19042132068583} a^{15} + \frac{7982178164854}{57126396205749} a^{14} + \frac{6998944615127}{57126396205749} a^{13} + \frac{7813797988663}{57126396205749} a^{12} + \frac{18565852224688}{57126396205749} a^{11} + \frac{13272360971084}{57126396205749} a^{10} - \frac{679218248825}{19042132068583} a^{9} + \frac{53756526079}{614262324793} a^{8} + \frac{1087572934642}{19042132068583} a^{7} - \frac{3444287884757}{57126396205749} a^{6} - \frac{1229610653561}{4394338169673} a^{5} - \frac{14416363690795}{57126396205749} a^{4} - \frac{1653114426410}{19042132068583} a^{3} + \frac{19699499018687}{57126396205749} a^{2} + \frac{921274433477}{3360376247397} a + \frac{9679518207088}{57126396205749}$, $\frac{1}{554183169591971049} a^{19} + \frac{4841}{554183169591971049} a^{18} - \frac{966220951686397}{184727723197323683} a^{17} - \frac{21263868832971}{5958958812816893} a^{16} - \frac{49921280644695716}{554183169591971049} a^{15} + \frac{33544174433126416}{554183169591971049} a^{14} + \frac{68490208655165831}{554183169591971049} a^{13} + \frac{86042939244771788}{554183169591971049} a^{12} - \frac{77604631639216673}{554183169591971049} a^{11} + \frac{84372365661894970}{554183169591971049} a^{10} + \frac{8413263081882758}{554183169591971049} a^{9} + \frac{73014594573481150}{184727723197323683} a^{8} - \frac{69859638462595262}{554183169591971049} a^{7} - \frac{39084060593279903}{184727723197323683} a^{6} + \frac{115905194564723680}{554183169591971049} a^{5} - \frac{131646630163485206}{554183169591971049} a^{4} - \frac{44936462317952603}{554183169591971049} a^{3} + \frac{12147124212158714}{42629474583997773} a^{2} + \frac{56301396416755822}{184727723197323683} a + \frac{4790444073534670}{184727723197323683}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52244610.934 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.5184729.1, 10.2.3145125532002597.1, 10.2.349458392444733.1, 10.6.241932733230969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | R | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| $11$ | 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |