Normalized defining polynomial
\( x^{20} + 9 x^{18} + 33 x^{16} - 32 x^{15} + 58 x^{14} - 249 x^{13} + 99 x^{12} - 749 x^{11} + 746 x^{10} - 620 x^{9} + 3755 x^{8} + 1950 x^{7} + 10325 x^{6} + 2625 x^{5} + 18375 x^{4} - 4375 x^{3} + 15000 x^{2} - 3125 x + 3125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9876551853017526544345703125=5^{10}\cdot 61^{7}\cdot 17939^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 17939$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{12} - \frac{7}{25} a^{10} - \frac{7}{25} a^{9} + \frac{3}{25} a^{8} - \frac{4}{25} a^{7} - \frac{6}{25} a^{6} - \frac{9}{25} a^{5} + \frac{6}{25} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{13} - \frac{7}{25} a^{11} - \frac{7}{25} a^{10} + \frac{3}{25} a^{9} - \frac{4}{25} a^{8} - \frac{6}{25} a^{7} - \frac{9}{25} a^{6} + \frac{6}{25} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{125} a^{16} - \frac{1}{125} a^{14} - \frac{7}{125} a^{12} - \frac{32}{125} a^{11} + \frac{53}{125} a^{10} - \frac{54}{125} a^{9} + \frac{44}{125} a^{8} + \frac{16}{125} a^{7} + \frac{31}{125} a^{6} + \frac{9}{25} a^{5} - \frac{1}{25} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{125} a^{17} - \frac{1}{125} a^{15} - \frac{7}{125} a^{13} - \frac{7}{125} a^{12} + \frac{53}{125} a^{11} + \frac{46}{125} a^{10} + \frac{44}{125} a^{9} - \frac{34}{125} a^{8} - \frac{19}{125} a^{7} - \frac{1}{25} a^{6} + \frac{4}{25} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{625} a^{18} - \frac{1}{625} a^{16} - \frac{7}{625} a^{14} - \frac{32}{625} a^{13} + \frac{53}{625} a^{12} + \frac{71}{625} a^{11} + \frac{44}{625} a^{10} + \frac{141}{625} a^{9} - \frac{219}{625} a^{8} + \frac{59}{125} a^{7} + \frac{49}{125} a^{6} - \frac{2}{25} a^{5} + \frac{8}{25} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{8880325394757990072630266875} a^{19} - \frac{4473032661728162822167506}{8880325394757990072630266875} a^{18} + \frac{17875782996779203072835584}{8880325394757990072630266875} a^{17} - \frac{15744343213769748792314819}{8880325394757990072630266875} a^{16} - \frac{168990652780961311536100067}{8880325394757990072630266875} a^{15} + \frac{32204587536250969212292077}{1776065078951598014526053375} a^{14} - \frac{3101705859571523941126347}{71042603158063920581042135} a^{13} + \frac{838892237035256496698421383}{8880325394757990072630266875} a^{12} - \frac{1530483802673991574607470277}{8880325394757990072630266875} a^{11} - \frac{479244678942444320723776463}{8880325394757990072630266875} a^{10} + \frac{110279557684906745982860563}{355213015790319602905210675} a^{9} - \frac{2637599416364595525682886781}{8880325394757990072630266875} a^{8} + \frac{329081161963588427392648937}{1776065078951598014526053375} a^{7} + \frac{194811187940850121060824666}{1776065078951598014526053375} a^{6} + \frac{139736123730854051597443741}{355213015790319602905210675} a^{5} - \frac{99712681097055605186508891}{355213015790319602905210675} a^{4} - \frac{23704292053611618036756501}{71042603158063920581042135} a^{3} - \frac{18658173041964433390427812}{71042603158063920581042135} a^{2} - \frac{2665526249282511326564166}{14208520631612784116208427} a + \frac{2958797521324081730158917}{14208520631612784116208427}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 372123.141049 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1525.1, 10.4.3419621875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.6.0.1 | $x^{6} - 4 x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 61.6.3.2 | $x^{6} - 3721 x^{2} + 2269810$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17939 | Data not computed | ||||||