Normalized defining polynomial
\( x^{20} - 6 x^{19} + 16 x^{18} - 40 x^{17} + 69 x^{16} + 44 x^{15} - 275 x^{14} - 36 x^{13} + 1240 x^{12} - 2696 x^{11} + 3576 x^{10} - 3812 x^{9} + 5907 x^{8} - 12888 x^{7} + 25347 x^{6} - 36688 x^{5} + 26208 x^{4} + 6056 x^{3} - 16823 x^{2} - 1620 x + 7048 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9841893626795960030057286598656=2^{20}\cdot 3^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{50} a^{18} - \frac{23}{50} a^{17} - \frac{9}{50} a^{16} - \frac{19}{50} a^{15} - \frac{7}{25} a^{14} - \frac{7}{25} a^{13} - \frac{13}{50} a^{12} + \frac{9}{50} a^{11} - \frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{9}{50} a^{8} + \frac{21}{50} a^{7} - \frac{3}{25} a^{6} - \frac{11}{25} a^{5} + \frac{17}{50} a^{4} - \frac{1}{2} a^{3} + \frac{11}{50} a^{2} + \frac{19}{50} a - \frac{11}{25}$, $\frac{1}{33114658727038963861874382602012030000} a^{19} - \frac{182552560494806324714014841565708727}{33114658727038963861874382602012030000} a^{18} + \frac{2967917118622935431125472717973513183}{33114658727038963861874382602012030000} a^{17} - \frac{232410756761810416934520694487215691}{2547281440541458758605721738616310000} a^{16} + \frac{3739608363090339799622235898229602703}{8278664681759740965468595650503007500} a^{15} - \frac{168843722511606382515677273334817051}{4139332340879870482734297825251503750} a^{14} + \frac{11568077227908441653632892480544103893}{33114658727038963861874382602012030000} a^{13} + \frac{8132679656974255601899182445348479111}{33114658727038963861874382602012030000} a^{12} - \frac{11838389954072861053393248703959410791}{33114658727038963861874382602012030000} a^{11} + \frac{1394793719646409284230686133315448123}{6622931745407792772374876520402406000} a^{10} + \frac{10890734534615933609841409407467585161}{33114658727038963861874382602012030000} a^{9} - \frac{14877477161476794853099349304322307893}{33114658727038963861874382602012030000} a^{8} + \frac{51234724969059488973317551496156697}{413933234087987048273429782525150375} a^{7} - \frac{653841520483594063472387482777082553}{2069666170439935241367148912625751875} a^{6} - \frac{2161041924942067164163520202655021849}{6622931745407792772374876520402406000} a^{5} - \frac{8955903445602254771795059099841411043}{33114658727038963861874382602012030000} a^{4} - \frac{9511796040832513976632297785541652789}{33114658727038963861874382602012030000} a^{3} - \frac{387150799887013318934444755133653443}{1324586349081558554474975304080481200} a^{2} + \frac{39805496978621043827566768170395351}{636820360135364689651430434654077500} a - \frac{1362611337307283544898957738614502789}{4139332340879870482734297825251503750}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{9668050423477325909361}{3592748448391172994590000} a^{19} + \frac{43221287504412349927847}{3592748448391172994590000} a^{18} - \frac{90163814403327067717263}{3592748448391172994590000} a^{17} + \frac{254687174187033567475263}{3592748448391172994590000} a^{16} - \frac{72339605445982605248683}{898187112097793248647500} a^{15} - \frac{103784099614619368943289}{449093556048896624323750} a^{14} + \frac{1360013377083313834026027}{3592748448391172994590000} a^{13} + \frac{2304055130364308658024729}{3592748448391172994590000} a^{12} - \frac{8351958998289067532415849}{3592748448391172994590000} a^{11} + \frac{2727309247904786343346197}{718549689678234598918000} a^{10} - \frac{14736860065084919476834121}{3592748448391172994590000} a^{9} + \frac{16048526150470832842666773}{3592748448391172994590000} a^{8} - \frac{431727037031330674296462}{44909355604889662432375} a^{7} + \frac{4655473392779390412823233}{224546778024448312161875} a^{6} - \frac{27304882043660623441670871}{718549689678234598918000} a^{5} + \frac{156250663121329752702808323}{3592748448391172994590000} a^{4} - \frac{32557308383223031932872171}{3592748448391172994590000} a^{3} - \frac{3585810654861128031063741}{143709937935646919783600} a^{2} + \frac{5115145188353950355841657}{898187112097793248647500} a + \frac{5560244889818707672428229}{449093556048896624323750} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78497371.7756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for t20n145 |
| Character table for t20n145 |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 10.4.196073702927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.12446784.1, 6.4.63011844.2 |
| Degree 10 sibling: | 10.4.196073702927424.1 |
| Degree 12 siblings: | Deg 12, Deg 12 |
| Degree 15 siblings: | Deg 15, Deg 15 |
| Degree 20 siblings: | Deg 20, Deg 20 |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |