Normalized defining polynomial
\( x^{20} - 4 x^{19} + 50 x^{18} - 160 x^{17} + 1183 x^{16} - 3204 x^{15} + 16682 x^{14} - 38000 x^{13} + 149216 x^{12} - 282888 x^{11} + 886308 x^{10} - 1402508 x^{9} + 4088499 x^{8} - 5786136 x^{7} + 17951094 x^{6} - 21370648 x^{5} + 47163703 x^{4} - 38829056 x^{3} + 95586810 x^{2} - 47685756 x + 95829823 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97756416090547441671665711234313879552=2^{55}\cdot 3^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(528=2^{4}\cdot 3\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{528}(1,·)$, $\chi_{528}(389,·)$, $\chi_{528}(289,·)$, $\chi_{528}(265,·)$, $\chi_{528}(269,·)$, $\chi_{528}(25,·)$, $\chi_{528}(221,·)$, $\chi_{528}(5,·)$, $\chi_{528}(97,·)$, $\chi_{528}(485,·)$, $\chi_{528}(433,·)$, $\chi_{528}(169,·)$, $\chi_{528}(317,·)$, $\chi_{528}(49,·)$, $\chi_{528}(245,·)$, $\chi_{528}(361,·)$, $\chi_{528}(313,·)$, $\chi_{528}(509,·)$, $\chi_{528}(125,·)$, $\chi_{528}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{69} a^{15} + \frac{5}{69} a^{14} - \frac{3}{23} a^{13} + \frac{7}{69} a^{12} + \frac{5}{69} a^{10} - \frac{11}{23} a^{9} + \frac{25}{69} a^{8} + \frac{32}{69} a^{7} - \frac{8}{23} a^{6} + \frac{28}{69} a^{5} + \frac{34}{69} a^{4} - \frac{5}{23} a^{3} - \frac{4}{23} a^{2} - \frac{9}{23} a + \frac{2}{23}$, $\frac{1}{69} a^{16} - \frac{11}{69} a^{14} + \frac{2}{23} a^{13} + \frac{11}{69} a^{12} + \frac{5}{69} a^{11} + \frac{11}{69} a^{10} + \frac{2}{23} a^{9} - \frac{8}{23} a^{8} - \frac{13}{69} a^{6} + \frac{32}{69} a^{5} - \frac{1}{69} a^{4} - \frac{29}{69} a^{3} + \frac{11}{23} a^{2} + \frac{26}{69} a - \frac{7}{69}$, $\frac{1}{69} a^{17} - \frac{8}{69} a^{14} + \frac{4}{69} a^{13} - \frac{10}{69} a^{12} + \frac{11}{69} a^{11} - \frac{8}{69} a^{10} + \frac{4}{69} a^{9} - \frac{1}{69} a^{8} + \frac{17}{69} a^{7} - \frac{25}{69} a^{6} - \frac{5}{23} a^{5} + \frac{1}{3} a^{4} - \frac{17}{69} a^{3} - \frac{14}{69} a^{2} - \frac{28}{69} a - \frac{26}{69}$, $\frac{1}{3178552014864600173781} a^{18} + \frac{765261677376535858}{1059517338288200057927} a^{17} + \frac{21864375385911364604}{3178552014864600173781} a^{16} - \frac{4001737349557489076}{3178552014864600173781} a^{15} - \frac{5836847295227750355}{46065971229921741649} a^{14} - \frac{264961818760054719767}{3178552014864600173781} a^{13} - \frac{22930222279628117539}{3178552014864600173781} a^{12} + \frac{231019599213776385334}{3178552014864600173781} a^{11} + \frac{461881308084115900684}{3178552014864600173781} a^{10} + \frac{99995753829212711414}{1059517338288200057927} a^{9} - \frac{275993971640834901923}{1059517338288200057927} a^{8} + \frac{940595832482715714130}{3178552014864600173781} a^{7} + \frac{151092254799246820522}{1059517338288200057927} a^{6} - \frac{1321979006878177089451}{3178552014864600173781} a^{5} - \frac{915418303539398776235}{3178552014864600173781} a^{4} + \frac{571682941614506702228}{3178552014864600173781} a^{3} - \frac{800531789327486297602}{3178552014864600173781} a^{2} - \frac{164242170356140065219}{1059517338288200057927} a - \frac{1046670850825342286678}{3178552014864600173781}$, $\frac{1}{108159701222931031384546881143930082846411811107} a^{19} - \frac{12452689409263607819588896}{108159701222931031384546881143930082846411811107} a^{18} + \frac{392318452576164603623648751418339942286102555}{108159701222931031384546881143930082846411811107} a^{17} - \frac{130040175232704124570280790417264601891260418}{36053233740977010461515627047976694282137270369} a^{16} + \frac{159345098677980207719156486946535506364305325}{36053233740977010461515627047976694282137270369} a^{15} - \frac{17109974989891792506043254352574526556219549160}{108159701222931031384546881143930082846411811107} a^{14} + \frac{1359331584946886297570453519086524326451708838}{108159701222931031384546881143930082846411811107} a^{13} - \frac{13659124535074021456603693940050243264698605321}{108159701222931031384546881143930082846411811107} a^{12} + \frac{1411499800454362943378284414831025861426788768}{108159701222931031384546881143930082846411811107} a^{11} + \frac{2531245512017318854392750833901503446511988652}{108159701222931031384546881143930082846411811107} a^{10} + \frac{1531468885715854766195115242673176997164898184}{108159701222931031384546881143930082846411811107} a^{9} + \frac{53776839722491975093159754298245768371123766272}{108159701222931031384546881143930082846411811107} a^{8} + \frac{4210087827229703468918773177503195090358964505}{36053233740977010461515627047976694282137270369} a^{7} - \frac{22546171104613696323673275611777674085549322715}{108159701222931031384546881143930082846411811107} a^{6} + \frac{12941115241137417836853440749852011450765911592}{36053233740977010461515627047976694282137270369} a^{5} + \frac{41961881450904604901943094378262540425001038549}{108159701222931031384546881143930082846411811107} a^{4} + \frac{20523294599182852456557105791424809753635606720}{108159701222931031384546881143930082846411811107} a^{3} + \frac{2920826303291420456834927104968459067180209343}{36053233740977010461515627047976694282137270369} a^{2} + \frac{13075613846468819623892975086293948904176126069}{36053233740977010461515627047976694282137270369} a + \frac{50653089097270264890459518158541934005342030908}{108159701222931031384546881143930082846411811107}$
Class group and class number
$C_{131042}$, which has order $131042$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.18432.2, \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||