Normalized defining polynomial
\( x^{20} - 7 x^{19} + 29 x^{18} - 97 x^{17} + 266 x^{16} - 615 x^{15} + 1280 x^{14} - 2427 x^{13} + 4197 x^{12} - 6412 x^{11} + 8704 x^{10} - 10813 x^{9} + 12227 x^{8} - 11913 x^{7} + 9115 x^{6} - 4910 x^{5} + 1756 x^{4} - 423 x^{3} + 74 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97531030166573056000000000000=2^{24}\cdot 5^{12}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{16} + \frac{3}{20} a^{15} - \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{7}{20} a^{12} + \frac{3}{20} a^{10} + \frac{9}{20} a^{9} - \frac{9}{20} a^{8} + \frac{1}{20} a^{7} + \frac{2}{5} a^{6} + \frac{1}{4} a^{5} - \frac{2}{5} a^{4} - \frac{9}{20} a^{3} - \frac{9}{20} a^{2} + \frac{1}{10} a + \frac{1}{20}$, $\frac{1}{20} a^{17} - \frac{3}{20} a^{15} - \frac{1}{5} a^{14} + \frac{1}{4} a^{13} + \frac{9}{20} a^{12} - \frac{7}{20} a^{11} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} + \frac{1}{4} a^{7} + \frac{1}{20} a^{6} - \frac{3}{20} a^{5} + \frac{1}{4} a^{4} + \frac{2}{5} a^{3} - \frac{1}{20} a^{2} + \frac{1}{4} a - \frac{3}{20}$, $\frac{1}{40} a^{18} - \frac{1}{8} a^{15} + \frac{3}{40} a^{14} - \frac{9}{40} a^{13} - \frac{3}{20} a^{12} - \frac{1}{2} a^{11} - \frac{17}{40} a^{10} + \frac{1}{8} a^{9} - \frac{3}{10} a^{8} - \frac{3}{20} a^{7} + \frac{1}{40} a^{6} - \frac{1}{2} a^{5} + \frac{7}{20} a^{4} - \frac{1}{5} a^{3} + \frac{9}{20} a^{2} + \frac{3}{40} a + \frac{13}{40}$, $\frac{1}{56939143701371670520} a^{19} + \frac{111473757873397373}{56939143701371670520} a^{18} + \frac{1407881241124158}{83734034854958339} a^{17} + \frac{1260474588400668823}{56939143701371670520} a^{16} + \frac{3747388757883915341}{28469571850685835260} a^{15} - \frac{1528827898432214361}{28469571850685835260} a^{14} + \frac{11557109275484368969}{56939143701371670520} a^{13} - \frac{2567469870100895161}{28469571850685835260} a^{12} - \frac{2534653247839761617}{56939143701371670520} a^{11} - \frac{554171332375786253}{14234785925342917630} a^{10} + \frac{4363670700784680021}{11387828740274334104} a^{9} - \frac{3449240846585104497}{28469571850685835260} a^{8} - \frac{20182983752156641209}{56939143701371670520} a^{7} - \frac{6098781024826298823}{56939143701371670520} a^{6} + \frac{10128801026637170587}{28469571850685835260} a^{5} + \frac{2479616613740132633}{5693914370137167052} a^{4} - \frac{7588271691893597659}{28469571850685835260} a^{3} + \frac{438593822668929257}{11387828740274334104} a^{2} - \frac{2464045258843868974}{7117392962671458815} a - \frac{7608894245384978683}{56939143701371670520}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2709557.62795 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.19518724000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | R | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.38 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $47$ | 47.8.0.1 | $x^{8} - x + 20$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 47.12.8.2 | $x^{12} - 103823 x^{3} + 190307559$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ |