Normalized defining polynomial
\( x^{20} + 3 x^{18} - 2 x^{17} + 8 x^{16} - 5 x^{15} + 12 x^{14} - 9 x^{13} + 19 x^{12} - 16 x^{11} + 21 x^{10} - 16 x^{9} + 27 x^{8} - 7 x^{7} + 22 x^{6} - 10 x^{5} + 12 x^{4} - 4 x^{3} + 4 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97351962012801650390625=3^{10}\cdot 5^{10}\cdot 641^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} - \frac{2}{17} a^{17} + \frac{3}{17} a^{16} - \frac{4}{17} a^{14} + \frac{3}{17} a^{13} + \frac{5}{17} a^{12} + \frac{3}{17} a^{11} - \frac{7}{17} a^{10} + \frac{3}{17} a^{9} - \frac{8}{17} a^{8} + \frac{5}{17} a^{7} - \frac{2}{17} a^{6} - \frac{6}{17} a^{5} + \frac{8}{17} a^{4} - \frac{2}{17} a^{3} + \frac{1}{17} a^{2} + \frac{2}{17} a - \frac{4}{17}$, $\frac{1}{332417609} a^{19} - \frac{3623712}{332417609} a^{18} + \frac{6394956}{19553977} a^{17} + \frac{85955}{5449469} a^{16} - \frac{111446870}{332417609} a^{15} - \frac{2191013}{5449469} a^{14} - \frac{151101014}{332417609} a^{13} - \frac{151946457}{332417609} a^{12} - \frac{109794511}{332417609} a^{11} - \frac{27059426}{332417609} a^{10} + \frac{154537179}{332417609} a^{9} + \frac{61076012}{332417609} a^{8} - \frac{71598155}{332417609} a^{7} + \frac{49109795}{332417609} a^{6} + \frac{52627086}{332417609} a^{5} + \frac{37203048}{332417609} a^{4} + \frac{3094406}{332417609} a^{3} - \frac{86260334}{332417609} a^{2} + \frac{5197256}{332417609} a + \frac{54013278}{332417609}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{211499}{19553977} a^{19} - \frac{6664227}{19553977} a^{18} - \frac{1094781}{19553977} a^{17} - \frac{288518}{320557} a^{16} + \frac{9724951}{19553977} a^{15} - \frac{781827}{320557} a^{14} + \frac{23021622}{19553977} a^{13} - \frac{65964894}{19553977} a^{12} + \frac{45233708}{19553977} a^{11} - \frac{114218671}{19553977} a^{10} + \frac{91950087}{19553977} a^{9} - \frac{119147834}{19553977} a^{8} + \frac{84193844}{19553977} a^{7} - \frac{167015638}{19553977} a^{6} + \frac{36495911}{19553977} a^{5} - \frac{121751876}{19553977} a^{4} + \frac{66497527}{19553977} a^{3} - \frac{81700104}{19553977} a^{2} + \frac{12370311}{19553977} a - \frac{8056690}{19553977} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3925.30605544 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T100):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.2.1284003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 641 | Data not computed | ||||||