Normalized defining polynomial
\( x^{20} + 25 x^{18} + 284 x^{16} + 1974 x^{14} + 9662 x^{12} + 36994 x^{10} + 121993 x^{8} + 375417 x^{6} + 1130970 x^{4} + 3394120 x^{2} + 10182481 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97243636996704282094565176844674400256=2^{20}\cdot 3^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(924=2^{2}\cdot 3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{924}(1,·)$, $\chi_{924}(323,·)$, $\chi_{924}(391,·)$, $\chi_{924}(841,·)$, $\chi_{924}(139,·)$, $\chi_{924}(461,·)$, $\chi_{924}(911,·)$, $\chi_{924}(71,·)$, $\chi_{924}(155,·)$, $\chi_{924}(421,·)$, $\chi_{924}(545,·)$, $\chi_{924}(475,·)$, $\chi_{924}(293,·)$, $\chi_{924}(41,·)$, $\chi_{924}(811,·)$, $\chi_{924}(307,·)$, $\chi_{924}(757,·)$, $\chi_{924}(169,·)$, $\chi_{924}(575,·)$, $\chi_{924}(629,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3191} a^{11} + \frac{11}{3191} a^{9} + \frac{44}{3191} a^{7} + \frac{77}{3191} a^{5} + \frac{55}{3191} a^{3} + \frac{11}{3191} a$, $\frac{1}{6665999} a^{12} + \frac{1391287}{6665999} a^{10} + \frac{580806}{6665999} a^{8} + \frac{2032744}{6665999} a^{6} + \frac{2903865}{6665999} a^{4} + \frac{1451916}{6665999} a^{2} + \frac{872}{2089}$, $\frac{1}{6665999} a^{13} + \frac{13}{6665999} a^{11} - \frac{1391210}{6665999} a^{9} + \frac{810679}{6665999} a^{7} + \frac{2431751}{6665999} a^{5} - \frac{1742165}{6665999} a^{3} + \frac{810536}{6665999} a$, $\frac{1}{6665999} a^{14} + \frac{520056}{6665999} a^{10} - \frac{73800}{6665999} a^{8} + \frac{2670075}{6665999} a^{6} + \frac{503584}{6665999} a^{4} + \frac{1933625}{6665999} a^{2} - \frac{891}{2089}$, $\frac{1}{6665999} a^{15} - \frac{105}{6665999} a^{11} + \frac{870428}{6665999} a^{9} - \frac{219012}{6665999} a^{7} + \frac{447181}{6665999} a^{5} - \frac{11234}{6665999} a^{3} - \frac{1898953}{6665999} a$, $\frac{1}{6665999} a^{16} + \frac{303585}{6665999} a^{10} + \frac{771627}{6665999} a^{8} + \frac{573333}{6665999} a^{6} - \frac{1741363}{6665999} a^{4} - \frac{2765750}{6665999} a^{2} - \frac{356}{2089}$, $\frac{1}{6665999} a^{17} + \frac{680}{6665999} a^{11} - \frac{2560328}{6665999} a^{9} + \frac{577511}{6665999} a^{7} + \frac{1598948}{6665999} a^{5} + \frac{572472}{6665999} a^{3} + \frac{2198048}{6665999} a$, $\frac{1}{6665999} a^{18} - \frac{2063630}{6665999} a^{10} - \frac{1076628}{6665999} a^{8} - \frac{805179}{6665999} a^{6} - \frac{920024}{6665999} a^{4} + \frac{1463020}{6665999} a^{2} + \frac{316}{2089}$, $\frac{1}{6665999} a^{19} + \frac{302}{6665999} a^{11} + \frac{1628627}{6665999} a^{9} - \frac{3316157}{6665999} a^{7} - \frac{1981236}{6665999} a^{5} + \frac{1657297}{6665999} a^{3} - \frac{2952388}{6665999} a$
Class group and class number
$C_{2}\times C_{8184}$, which has order $16368$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1746210.04277 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{3}, \sqrt{-77})\), \(\Q(\zeta_{11})^+\), 10.0.40581147486860288.1, 10.10.53339349076992.1, 10.0.9630096522760791.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |