Normalized defining polynomial
\( x^{20} - 2 x^{19} + 25 x^{18} - 48 x^{17} + 973 x^{16} - 1898 x^{15} + 14571 x^{14} - 27244 x^{13} + 266341 x^{12} - 505438 x^{11} + 2417591 x^{10} - 4262356 x^{9} + 24070297 x^{8} - 44565012 x^{7} + 126200543 x^{6} - 278561850 x^{5} + 778793317 x^{4} - 1420801804 x^{3} + 2346260051 x^{2} - 1529298058 x + 1335925537 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97243636996704282094565176844674400256=2^{20}\cdot 3^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(924=2^{2}\cdot 3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{924}(1,·)$, $\chi_{924}(491,·)$, $\chi_{924}(769,·)$, $\chi_{924}(841,·)$, $\chi_{924}(587,·)$, $\chi_{924}(13,·)$, $\chi_{924}(335,·)$, $\chi_{924}(659,·)$, $\chi_{924}(853,·)$, $\chi_{924}(601,·)$, $\chi_{924}(349,·)$, $\chi_{924}(419,·)$, $\chi_{924}(421,·)$, $\chi_{924}(743,·)$, $\chi_{924}(169,·)$, $\chi_{924}(839,·)$, $\chi_{924}(827,·)$, $\chi_{924}(239,·)$, $\chi_{924}(757,·)$, $\chi_{924}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{1}{11}$, $\frac{1}{11} a^{12} + \frac{1}{11} a$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{2}$, $\frac{1}{11} a^{14} + \frac{1}{11} a^{3}$, $\frac{1}{4807} a^{15} - \frac{182}{4807} a^{14} - \frac{18}{437} a^{13} - \frac{1}{209} a^{12} - \frac{179}{4807} a^{11} + \frac{160}{4807} a^{10} - \frac{1062}{4807} a^{9} - \frac{1116}{4807} a^{8} + \frac{1149}{4807} a^{7} + \frac{1128}{4807} a^{6} + \frac{1248}{4807} a^{5} + \frac{821}{4807} a^{4} + \frac{1891}{4807} a^{3} - \frac{1754}{4807} a^{2} + \frac{1566}{4807} a + \frac{58}{209}$, $\frac{1}{13631589653} a^{16} - \frac{1186976}{13631589653} a^{15} - \frac{33200318}{13631589653} a^{14} - \frac{6947625}{13631589653} a^{13} - \frac{531189917}{13631589653} a^{12} - \frac{402512736}{13631589653} a^{11} + \frac{400924099}{13631589653} a^{10} + \frac{1339321221}{13631589653} a^{9} + \frac{1831974951}{13631589653} a^{8} + \frac{5760172711}{13631589653} a^{7} - \frac{1102613134}{13631589653} a^{6} - \frac{3291485420}{13631589653} a^{5} + \frac{44298446}{13631589653} a^{4} + \frac{3225579180}{13631589653} a^{3} + \frac{5187423462}{13631589653} a^{2} + \frac{5186171894}{13631589653} a + \frac{43014350}{592677811}$, $\frac{1}{13631589653} a^{17} + \frac{20740}{1239235423} a^{15} + \frac{416297494}{13631589653} a^{14} + \frac{23063236}{717452087} a^{13} - \frac{472909313}{13631589653} a^{12} + \frac{311893673}{13631589653} a^{11} - \frac{607797105}{13631589653} a^{10} + \frac{1837870070}{13631589653} a^{9} - \frac{4122598219}{13631589653} a^{8} - \frac{3912650123}{13631589653} a^{7} - \frac{1478156132}{13631589653} a^{6} - \frac{4746576601}{13631589653} a^{5} - \frac{319777351}{13631589653} a^{4} - \frac{9732642}{1239235423} a^{3} - \frac{2858163371}{13631589653} a^{2} - \frac{270619706}{13631589653} a + \frac{492425}{53879801}$, $\frac{1}{13631589653} a^{18} - \frac{901426}{13631589653} a^{15} + \frac{23356692}{1239235423} a^{14} + \frac{140472191}{13631589653} a^{13} - \frac{43911822}{1239235423} a^{12} + \frac{304755427}{13631589653} a^{11} + \frac{584262585}{13631589653} a^{10} + \frac{45446473}{13631589653} a^{9} - \frac{207000943}{592677811} a^{8} + \frac{3374270434}{13631589653} a^{7} - \frac{4979804858}{13631589653} a^{6} + \frac{4357286555}{13631589653} a^{5} + \frac{2534033212}{13631589653} a^{4} - \frac{1711342737}{13631589653} a^{3} - \frac{3933789501}{13631589653} a^{2} - \frac{5970712863}{13631589653} a - \frac{256397798}{592677811}$, $\frac{1}{1795330098088901899402272081112837541431803520225339} a^{19} - \frac{27230530846112541215618553494570817237802}{1795330098088901899402272081112837541431803520225339} a^{18} + \frac{23080430112557169187337976599968543519803}{1795330098088901899402272081112837541431803520225339} a^{17} - \frac{14166715510208374440893781731261923996158}{1795330098088901899402272081112837541431803520225339} a^{16} + \frac{127544416881989433537754524920312619374316136613}{1795330098088901899402272081112837541431803520225339} a^{15} + \frac{79240663424778823895247974522720669710060617205549}{1795330098088901899402272081112837541431803520225339} a^{14} + \frac{64247001473896195468248813296293143074343900629380}{1795330098088901899402272081112837541431803520225339} a^{13} - \frac{25862263816784876623486326238229545740701037123204}{1795330098088901899402272081112837541431803520225339} a^{12} + \frac{22235758587152136245020835184671191652821598022893}{1795330098088901899402272081112837541431803520225339} a^{11} - \frac{4805871777780974384258330262965180464450696339867}{163211827098991081763842916464803412857436683656849} a^{10} - \frac{7997739235700828313527094122493535713190560277129}{163211827098991081763842916464803412857436683656849} a^{9} - \frac{36370634635458532492463443366035727290609400093857}{94491057794152731547488004269096712706937027380281} a^{8} - \frac{734954498977014891556318556286389295155953049141184}{1795330098088901899402272081112837541431803520225339} a^{7} - \frac{22283996964630821290570245674250550378574674934977}{1795330098088901899402272081112837541431803520225339} a^{6} + \frac{786417228709052906748581287751994691638718601316580}{1795330098088901899402272081112837541431803520225339} a^{5} - \frac{440015721792273957371741067782567439513829918507847}{1795330098088901899402272081112837541431803520225339} a^{4} + \frac{108081996016829655335648685144590896437808411258722}{1795330098088901899402272081112837541431803520225339} a^{3} + \frac{518153489260243296426819145589814890226626937613696}{1795330098088901899402272081112837541431803520225339} a^{2} + \frac{868032667957427315889080816049654874491307197843898}{1795330098088901899402272081112837541431803520225339} a + \frac{28887090186819449995946218864587349689195919466328}{78057830351691386930533568744036414844861022618493}$
Class group and class number
$C_{2}\times C_{22220}$, which has order $44440$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1415140.16249 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{-21}, \sqrt{-33})\), \(\Q(\zeta_{11})^+\), 10.10.39630026842637.1, 10.0.896474439937004544.3, 10.0.586732839846912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |