Normalized defining polynomial
\( x^{20} - 8 x^{19} + 111 x^{18} - 648 x^{17} + 5514 x^{16} - 26230 x^{15} + 172889 x^{14} - 697337 x^{13} + 3828520 x^{12} - 13199759 x^{11} + 61975866 x^{10} - 181154943 x^{9} + 733164737 x^{8} - 1774890291 x^{7} + 6169036807 x^{6} - 11793282781 x^{5} + 34734256499 x^{4} - 47487519227 x^{3} + 115845571171 x^{2} - 87034245171 x + 169930201079 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9697673576628699464987098790938369140625=5^{10}\cdot 11^{16}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2365=5\cdot 11\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2365}(1,·)$, $\chi_{2365}(386,·)$, $\chi_{2365}(1291,·)$, $\chi_{2365}(1676,·)$, $\chi_{2365}(1549,·)$, $\chi_{2365}(1934,·)$, $\chi_{2365}(2194,·)$, $\chi_{2365}(214,·)$, $\chi_{2365}(474,·)$, $\chi_{2365}(859,·)$, $\chi_{2365}(861,·)$, $\chi_{2365}(1246,·)$, $\chi_{2365}(1764,·)$, $\chi_{2365}(2149,·)$, $\chi_{2365}(1076,·)$, $\chi_{2365}(1461,·)$, $\chi_{2365}(1334,·)$, $\chi_{2365}(1719,·)$, $\chi_{2365}(1721,·)$, $\chi_{2365}(2106,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{36079} a^{18} - \frac{6167}{36079} a^{17} + \frac{17114}{36079} a^{16} + \frac{11863}{36079} a^{15} - \frac{3829}{36079} a^{14} - \frac{17245}{36079} a^{13} - \frac{5241}{36079} a^{12} + \frac{14858}{36079} a^{11} - \frac{15253}{36079} a^{10} - \frac{8870}{36079} a^{9} + \frac{17988}{36079} a^{8} + \frac{13980}{36079} a^{7} + \frac{17709}{36079} a^{6} + \frac{9674}{36079} a^{5} + \frac{4673}{36079} a^{4} - \frac{16487}{36079} a^{3} - \frac{6544}{36079} a^{2} + \frac{13882}{36079} a - \frac{14088}{36079}$, $\frac{1}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{19} - \frac{174010145922185799880080301323296166387338309099148756715565427737894506}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{18} - \frac{7184683742095273441485496688409095157853276842757941545665702209964557010706}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{17} - \frac{2785432460404079796808599331504374440092352934364175129977483046978858294577}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{16} - \frac{1565928885420644903850037083879588499127867072363594482737123115024352115016}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{15} + \frac{11290671714942851988532422767555739083072879127939999809610222070733497106056}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{14} + \frac{920714981158648188392086470551902734947734361493250271980680947157690815842}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{13} + \frac{10116234389290435196996128617387358523454192414447254793921672313139703088668}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{12} + \frac{7204431045045330771751503925252539549798368371037843780968159209622131046357}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{11} - \frac{6845396770658040103117565866373679720247736093859808472984530637075489562453}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{10} - \frac{8520461160286636939993521078647520485046193981933720831849873110174890150699}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{9} - \frac{4172864775086954515620586519406322779229239807925844303251720625666048522350}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{8} + \frac{6748323694311012203359456333855596667336715789991785668706235025472849109649}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{7} - \frac{8052494355197303039461412795265539923050777780029449561936919571935908451182}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{6} + \frac{9313840213206032981063553320015677245547324115659017767227499030255573659681}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{5} - \frac{2063596308287871269386230243712237164854524669768261491198300843144766443631}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{4} - \frac{5091312403171789109313741318417364997310589495871786806533928791899411452354}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{3} - \frac{870563720152405037113937330609225582663285132444624251214424348936639264875}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a^{2} + \frac{1506696755762180871320588990179495116800689269901468005903445427763423570945}{22635296669342126867814761245642887320987241137811174360527415094745287572857} a - \frac{1647008345973003572896012673608033391823266347761923538045131796794396512233}{22635296669342126867814761245642887320987241137811174360527415094745287572857}$
Class group and class number
$C_{4}\times C_{20}\times C_{20}\times C_{1540}$, which has order $2464000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-215}) \), \(\Q(\sqrt{5}, \sqrt{-43})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.31512565339032283.3, 10.0.98476766684475884375.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |