Normalized defining polynomial
\( x^{20} - 2 x^{19} + 54 x^{18} - 97 x^{17} + 1454 x^{16} - 2178 x^{15} + 24203 x^{14} - 29499 x^{13} + 271844 x^{12} - 266297 x^{11} + 2138211 x^{10} - 1737644 x^{9} + 11918963 x^{8} - 8666349 x^{7} + 46563112 x^{6} - 30553298 x^{5} + 119110990 x^{4} - 62702972 x^{3} + 173029525 x^{2} - 53651341 x + 103856419 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9678054300479022526566826737717=3^{10}\cdot 7^{15}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{19} - \frac{63367682482634117131536896710777015538679754844169296110353571297411}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{18} + \frac{591727772454637601936293995769408691922120270961466763863057179980849}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{17} + \frac{237320797307247655925528566945972028983496104601853921172709515565200}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{16} + \frac{817995803188288222188217327143527590402464765117548138800611684706163}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{15} + \frac{1029053173262068588696792741325391836035510731114275682432350406654336}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{14} + \frac{28183738819150229835718328200990114432525555328893062928307220254056}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{13} - \frac{394882289125310988228442779419886588009521620836919287828320797513765}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{12} + \frac{677882400767370036191205455472778828814488790090624404306169521766277}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{11} + \frac{72194481248495025111635432006446844663508675269513822654410336346709}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{10} - \frac{660456890271996678092183247238261700716886006577439664994585130578066}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{9} - \frac{754575026197457654243249873136866195713709199492045633783833750461292}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{8} + \frac{1005453776316832888693591514019996349684338067938710969290265770527607}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{7} - \frac{1036374412267173903254217011529692422016471066159955286299577453370749}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{6} - \frac{108326704434066174812195870893284550363455915578949049473568554869114}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{5} - \frac{209462726999804289182790330172896710419096995265641482354927768632223}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{4} - \frac{604619404287966822309819333854182881385114139354445167709920284917364}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{3} + \frac{111497192709205084285214578802183361066615332706727588882886159767877}{2188459369635275291342227254564356159819140518458111509016424103079159} a^{2} - \frac{976121882349822309357881056316977592930256624676561589459748882764102}{2188459369635275291342227254564356159819140518458111509016424103079159} a - \frac{1010799837690829528880652143347473115952415081110392409785750452630409}{2188459369635275291342227254564356159819140518458111509016424103079159}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7036306.946137199 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.33957.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |