Normalized defining polynomial
\( x^{20} - 8 x^{19} + 613 x^{18} - 3750 x^{17} + 151980 x^{16} - 724333 x^{15} + 19969012 x^{14} - 74453400 x^{13} + 1542496749 x^{12} - 4377184144 x^{11} + 72563180273 x^{10} - 144348494038 x^{9} + 2068221953123 x^{8} - 2346917686507 x^{7} + 34524640552202 x^{6} - 10644189421621 x^{5} + 322532511927071 x^{4} + 87422158458786 x^{3} + 1573396773373304 x^{2} + 335190654909333 x + 1431177952949883 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96661053444309405452136701474980370297825977344=2^{10}\cdot 3^{2}\cdot 97^{2}\cdot 401^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $223.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{69} a^{17} - \frac{1}{23} a^{16} + \frac{28}{69} a^{15} + \frac{11}{23} a^{14} - \frac{1}{69} a^{13} - \frac{13}{69} a^{12} + \frac{10}{23} a^{11} + \frac{7}{69} a^{10} + \frac{4}{23} a^{9} + \frac{31}{69} a^{8} - \frac{7}{23} a^{7} + \frac{6}{23} a^{6} + \frac{17}{69} a^{5} - \frac{5}{23} a^{4} - \frac{4}{69} a^{3} - \frac{16}{69} a^{2} + \frac{31}{69} a + \frac{5}{23}$, $\frac{1}{69} a^{18} - \frac{4}{69} a^{16} + \frac{2}{69} a^{15} - \frac{17}{69} a^{14} + \frac{10}{23} a^{13} - \frac{32}{69} a^{12} + \frac{5}{69} a^{11} - \frac{13}{69} a^{10} + \frac{7}{23} a^{9} - \frac{20}{69} a^{8} + \frac{8}{23} a^{7} + \frac{2}{69} a^{6} - \frac{11}{23} a^{5} - \frac{26}{69} a^{4} + \frac{6}{23} a^{3} + \frac{29}{69} a^{2} + \frac{16}{69} a - \frac{8}{23}$, $\frac{1}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{19} + \frac{232827869753768084311835582689309148246146974916861847521300559128966841481784364608040326616173804015442873961034928097090674143184015}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{18} - \frac{32460067085083441604927904089989002094210946283813702693864165894601897310609786453704506927679421599738444146771920159449245320159566478}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{17} + \frac{392804771343630222830589649640319548805214971722722159315416044106379865010784972389560875404236957562692732651319791291222668267992330194}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{16} - \frac{357824787350958285408064247991689601563481434379948208031365184906561539014046009577308030448652561713039255458690819111723636609734885649}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{15} - \frac{731356334587462166141936801462446009334450515719258854820184679372712097034397830838431882750953607035266250683668394641720848426978861977}{1506997756127356257293914814775939004847927912317595457370133749104013690637622122582152391393090031837788508397815293128202934181740920089} a^{14} - \frac{2108873546511983527271144594159307007870771469820068533374868705158225185016034476977075908988938566571857739523824008759430211804807836022}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{13} + \frac{1671455944112152093045788565353960570327422073820919413811786181767885789243388826283626257422530943555531415706368129742853673276208822948}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{12} - \frac{1318763012136650824487515335552037236199189955499835871864496158509085673486959648079248612522509910268875426595724600006504251439345358614}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{11} + \frac{1002832875570087218839051725937758216073015071151319009332065536127679646979875601924296676783351635469146038611477035398486771074707082052}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{10} - \frac{276806359160770600338036442385922367507196400527819570850661578671022528849578350985246973093211296216713437233744688171957562307850713064}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{9} - \frac{607918211443447233715638378224215304899183765126976047527210389706212532079952463827435888011391382040501816705801856594006463308857629733}{1506997756127356257293914814775939004847927912317595457370133749104013690637622122582152391393090031837788508397815293128202934181740920089} a^{8} + \frac{1012626199679288879150026786050724437105274508249614694332694327380580400371442435093953908978607000620119312776953140197477400497704188173}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{7} + \frac{1051639215709933649359729922970308986666774056577288276722171379810423763711687549944370490797911089240515207794527993033618449115116870215}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{6} + \frac{1253244218356721743753093200257847087990493409006096454842403821411973692838900356504823953679114608635793012450689565190959135704632435839}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{5} - \frac{702789331265437639894460700255269842499836316475013894498828955393449938436385755452752202750779333036854114306182594063100275624597290885}{1506997756127356257293914814775939004847927912317595457370133749104013690637622122582152391393090031837788508397815293128202934181740920089} a^{4} - \frac{1903760774350180021550645655834096646401607466320921347746745382987550935885566651018054465918551713060985065364282392902283137013909420768}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{3} - \frac{1954341770651265956193906438850283285345965311701096018103288181597209543698779396872867009695705778619639056618175526144232923978953032796}{4520993268382068771881744444327817014543783736952786372110401247312041071912866367746457174179270095513365525193445879384608802545222760267} a^{2} - \frac{297972939444593312413861034588391098675283511995051054950275199684724811190584144459801440130886621984382415023329228959820250600529685286}{1506997756127356257293914814775939004847927912317595457370133749104013690637622122582152391393090031837788508397815293128202934181740920089} a + \frac{635267464591230437853753514055690209243034903113437802621386753698423837072873226881850149298586498328263132328260316366156098317203485772}{1506997756127356257293914814775939004847927912317595457370133749104013690637622122582152391393090031837788508397815293128202934181740920089}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{33228588}$, which has order $2126629632$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n350 are not computed |
| Character table for t20n350 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||