Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} + 8 x^{17} - 62 x^{16} + 160 x^{15} - 136 x^{14} - 104 x^{13} + 748 x^{12} - 1200 x^{11} + 1416 x^{10} - 456 x^{9} - 294 x^{8} + 1848 x^{7} - 1008 x^{6} + 1104 x^{5} + 2097 x^{4} - 60 x^{3} + 1128 x^{2} + 1464 x + 564 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96479729228174488169059713024=2^{63}\cdot 3^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{36246703791470795427093963766300} a^{19} + \frac{47647051568985058944435936323}{1394103991979645977965152452550} a^{18} + \frac{4722332153887808434003702637527}{18123351895735397713546981883150} a^{17} - \frac{2210537046371818267950434807846}{9061675947867698856773490941575} a^{16} - \frac{1766694234517120370352590334893}{3624670379147079542709396376630} a^{15} - \frac{118141415946023324412518786756}{362467037914707954270939637663} a^{14} - \frac{2873872447670782207505147442334}{9061675947867698856773490941575} a^{13} - \frac{2158902090506453438875981834044}{9061675947867698856773490941575} a^{12} + \frac{4228677457383311709250898464949}{9061675947867698856773490941575} a^{11} + \frac{2944619323062802104625332211598}{9061675947867698856773490941575} a^{10} + \frac{110048915992357873616318534435}{362467037914707954270939637663} a^{9} + \frac{255440142494862707369287504247}{697051995989822988982576226275} a^{8} - \frac{8514147083772028776063753990253}{18123351895735397713546981883150} a^{7} - \frac{1070716469204115970996679183291}{9061675947867698856773490941575} a^{6} + \frac{1927260169639966132049880993741}{9061675947867698856773490941575} a^{5} - \frac{4253631076017341955315924174442}{9061675947867698856773490941575} a^{4} - \frac{14374038393907665909714226373039}{36246703791470795427093963766300} a^{3} + \frac{8710407328947429388658922543231}{18123351895735397713546981883150} a^{2} - \frac{7108668940866177927383376460099}{18123351895735397713546981883150} a - \frac{3521887360479636518705421162108}{9061675947867698856773490941575}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5069328.62837 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28800 |
| The 41 conjugacy class representatives for t20n547 |
| Character table for t20n547 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.0.13824.1, 10.2.5283615080448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.12.15.3 | $x^{12} - 3 x^{11} - 3 x^{9} - 3 x^{8} + 3 x^{7} - 3 x^{6} - 3 x^{4} - 3$ | $12$ | $1$ | $15$ | 12T42 | $[3/2]_{4}^{6}$ | |