Normalized defining polynomial
\( x^{20} - 340 x^{18} - 2420 x^{17} + 42090 x^{16} + 699996 x^{15} + 1270950 x^{14} - 57225080 x^{13} - 654705640 x^{12} - 2285604420 x^{11} + 18802808106 x^{10} + 327373663100 x^{9} + 2578759859805 x^{8} + 13871537857540 x^{7} + 55739518657820 x^{6} + 171798573324796 x^{5} + 405664528658450 x^{4} + 719764864421240 x^{3} + 924597931103020 x^{2} + 789670631905760 x + 366060061309601 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(963635678828500845854720000000000000000000000000000000000=2^{55}\cdot 5^{34}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $706.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4400=2^{4}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4400}(1,·)$, $\chi_{4400}(2819,·)$, $\chi_{4400}(3041,·)$, $\chi_{4400}(521,·)$, $\chi_{4400}(3459,·)$, $\chi_{4400}(3281,·)$, $\chi_{4400}(339,·)$, $\chi_{4400}(1259,·)$, $\chi_{4400}(2201,·)$, $\chi_{4400}(2539,·)$, $\chi_{4400}(2721,·)$, $\chi_{4400}(1379,·)$, $\chi_{4400}(361,·)$, $\chi_{4400}(619,·)$, $\chi_{4400}(1299,·)$, $\chi_{4400}(2561,·)$, $\chi_{4400}(841,·)$, $\chi_{4400}(1081,·)$, $\chi_{4400}(3579,·)$, $\chi_{4400}(3499,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{25} a^{5} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{25}$, $\frac{1}{25} a^{6} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{25} a$, $\frac{1}{25} a^{7} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{25} a^{2} - \frac{2}{5}$, $\frac{1}{25} a^{8} + \frac{2}{5} a^{4} - \frac{1}{25} a^{3} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{625} a^{10} + \frac{1}{125} a^{8} - \frac{2}{125} a^{7} - \frac{1}{125} a^{6} - \frac{2}{625} a^{5} + \frac{3}{25} a^{4} + \frac{54}{125} a^{3} - \frac{3}{125} a^{2} + \frac{21}{125} a - \frac{24}{625}$, $\frac{1}{625} a^{11} + \frac{1}{125} a^{9} - \frac{2}{125} a^{8} - \frac{1}{125} a^{7} - \frac{2}{625} a^{6} + \frac{54}{125} a^{4} + \frac{22}{125} a^{3} - \frac{29}{125} a^{2} - \frac{149}{625} a + \frac{3}{25}$, $\frac{1}{625} a^{12} - \frac{2}{125} a^{9} - \frac{1}{125} a^{8} - \frac{2}{625} a^{7} + \frac{1}{125} a^{5} - \frac{28}{125} a^{4} + \frac{46}{125} a^{3} - \frac{149}{625} a^{2} - \frac{12}{25} a + \frac{29}{125}$, $\frac{1}{625} a^{13} - \frac{1}{125} a^{9} - \frac{2}{625} a^{8} + \frac{1}{125} a^{6} - \frac{2}{125} a^{5} + \frac{21}{125} a^{4} - \frac{24}{625} a^{3} - \frac{7}{25} a^{2} + \frac{4}{125} a + \frac{22}{125}$, $\frac{1}{3125} a^{14} + \frac{1}{3125} a^{13} + \frac{1}{3125} a^{12} + \frac{1}{3125} a^{11} + \frac{1}{3125} a^{10} - \frac{37}{3125} a^{9} - \frac{12}{3125} a^{8} - \frac{12}{3125} a^{7} + \frac{38}{3125} a^{6} + \frac{38}{3125} a^{5} + \frac{61}{3125} a^{4} + \frac{536}{3125} a^{3} + \frac{36}{3125} a^{2} + \frac{736}{3125} a + \frac{1486}{3125}$, $\frac{1}{15625} a^{15} - \frac{1}{3125} a^{13} + \frac{2}{3125} a^{12} + \frac{1}{3125} a^{11} - \frac{3}{15625} a^{10} + \frac{9}{625} a^{9} - \frac{33}{3125} a^{8} + \frac{56}{3125} a^{7} - \frac{42}{3125} a^{6} - \frac{197}{15625} a^{5} - \frac{9}{625} a^{4} - \frac{191}{3125} a^{3} + \frac{17}{3125} a^{2} - \frac{134}{3125} a - \frac{176}{15625}$, $\frac{1}{49046875} a^{16} - \frac{182}{9809375} a^{15} - \frac{1}{78475} a^{14} - \frac{1307}{9809375} a^{13} - \frac{5043}{9809375} a^{12} - \frac{35448}{49046875} a^{11} - \frac{1828}{9809375} a^{10} + \frac{13911}{1961875} a^{9} + \frac{36339}{9809375} a^{8} + \frac{113036}{9809375} a^{7} - \frac{206482}{49046875} a^{6} + \frac{57262}{9809375} a^{5} + \frac{228724}{1961875} a^{4} + \frac{3322943}{9809375} a^{3} - \frac{2561018}{9809375} a^{2} + \frac{22070429}{49046875} a + \frac{2310773}{9809375}$, $\frac{1}{49046875} a^{17} - \frac{29}{49046875} a^{15} + \frac{1086}{9809375} a^{14} + \frac{7824}{9809375} a^{13} + \frac{12077}{49046875} a^{12} + \frac{84}{1961875} a^{11} + \frac{12852}{49046875} a^{10} + \frac{2676}{228125} a^{9} + \frac{140412}{9809375} a^{8} - \frac{6209}{671875} a^{7} + \frac{548}{392375} a^{6} - \frac{3429}{671875} a^{5} - \frac{3539354}{9809375} a^{4} + \frac{1734089}{9809375} a^{3} + \frac{23682304}{49046875} a^{2} + \frac{845086}{1961875} a + \frac{16717744}{49046875}$, $\frac{1}{95647092304992852328668296875} a^{18} + \frac{966751953055636617786}{95647092304992852328668296875} a^{17} + \frac{729194365575622684564}{95647092304992852328668296875} a^{16} - \frac{2322936141113862183247108}{95647092304992852328668296875} a^{15} + \frac{700488676004508430513254}{19129418460998570465733659375} a^{14} + \frac{55948954394648530752018082}{95647092304992852328668296875} a^{13} + \frac{75989741029797112792714232}{95647092304992852328668296875} a^{12} - \frac{26589753967147116346958362}{95647092304992852328668296875} a^{11} + \frac{58312810814209340633482504}{95647092304992852328668296875} a^{10} - \frac{200048941950782552168519738}{19129418460998570465733659375} a^{9} - \frac{885085319426220906050465092}{95647092304992852328668296875} a^{8} - \frac{1585813712635605011098969622}{95647092304992852328668296875} a^{7} - \frac{1366928243549725561585592243}{95647092304992852328668296875} a^{6} - \frac{787401678783620923841408059}{95647092304992852328668296875} a^{5} - \frac{6321116095088857059099632016}{19129418460998570465733659375} a^{4} - \frac{6231047956312236911162211866}{95647092304992852328668296875} a^{3} + \frac{22850133546316821750289233854}{95647092304992852328668296875} a^{2} + \frac{46046199351953748393534298541}{95647092304992852328668296875} a - \frac{3392286006318424176704778837}{95647092304992852328668296875}$, $\frac{1}{2832206164371241898947124326091151765849895182318128984375} a^{19} - \frac{11855864760135571173026683464}{2832206164371241898947124326091151765849895182318128984375} a^{18} + \frac{15012844305196233717569064285644592123586725916061}{2832206164371241898947124326091151765849895182318128984375} a^{17} - \frac{11290201252032797683234943570445508618307627875314}{2832206164371241898947124326091151765849895182318128984375} a^{16} - \frac{223002398494916338601800761380739555822907549685658}{38797344717414272588316771590289750217121851812577109375} a^{15} + \frac{377816324095468531919549779258008988322368523903595557}{2832206164371241898947124326091151765849895182318128984375} a^{14} + \frac{31766943041548141363803572368578034025628152002338264}{65865259636540509277840100606770971298834771681816953125} a^{13} + \frac{194249380428273095911931273995873513624672887289821077}{2832206164371241898947124326091151765849895182318128984375} a^{12} - \frac{405157552169112884377333440045139404832217703785133723}{2832206164371241898947124326091151765849895182318128984375} a^{11} + \frac{545816950548145927030094962291000188323823312935480662}{2832206164371241898947124326091151765849895182318128984375} a^{10} + \frac{18582973018736079014961868662030787949468127331847343458}{2832206164371241898947124326091151765849895182318128984375} a^{9} - \frac{9735005854038620326712480023532453752176890743668624737}{2832206164371241898947124326091151765849895182318128984375} a^{8} + \frac{18054259585217633388625817515444416372847465177296123863}{2832206164371241898947124326091151765849895182318128984375} a^{7} - \frac{9225171116340468125375240545842291141123369981126805912}{2832206164371241898947124326091151765849895182318128984375} a^{6} - \frac{3862099357134812336469811826328919633129277455904262147}{2832206164371241898947124326091151765849895182318128984375} a^{5} + \frac{506326577603348391179193870680065819110091543626107725234}{2832206164371241898947124326091151765849895182318128984375} a^{4} - \frac{1160792835994286732251609225264323785412332711347836328526}{2832206164371241898947124326091151765849895182318128984375} a^{3} + \frac{886218238763975216695049759825311479610776833786326525749}{2832206164371241898947124326091151765849895182318128984375} a^{2} + \frac{563275548853846672878647993608312066047439294527744845449}{2832206164371241898947124326091151765849895182318128984375} a - \frac{59439862081832382396728252821764146003574834549412191856}{2832206164371241898947124326091151765849895182318128984375}$
Class group and class number
$C_{2180741210}$, which has order $2180741210$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62756100051.98372 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.51200.2, 5.5.5719140625.1, 10.10.1071794405000000000000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||