Normalized defining polynomial
\( x^{20} - 3 x^{19} + 12 x^{18} - 35 x^{17} + 92 x^{16} - 209 x^{15} + 432 x^{14} - 807 x^{13} + 1350 x^{12} - 2080 x^{11} + 2889 x^{10} - 3596 x^{9} + 4057 x^{8} - 4070 x^{7} + 3535 x^{6} - 2544 x^{5} + 1493 x^{4} - 546 x^{3} + 125 x^{2} - 16 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9581696980859936543610161=17^{9}\cdot 97^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} + \frac{9}{43} a^{17} - \frac{2}{43} a^{16} + \frac{4}{43} a^{15} - \frac{3}{43} a^{14} - \frac{2}{43} a^{13} - \frac{4}{43} a^{11} + \frac{12}{43} a^{10} + \frac{14}{43} a^{9} + \frac{2}{43} a^{8} + \frac{9}{43} a^{7} + \frac{8}{43} a^{6} + \frac{2}{43} a^{5} + \frac{3}{43} a^{4} + \frac{9}{43} a^{2} - \frac{8}{43} a + \frac{6}{43}$, $\frac{1}{7441903824221309673} a^{19} + \frac{440434021450480}{7441903824221309673} a^{18} - \frac{1489035225743349842}{7441903824221309673} a^{17} - \frac{2333690601678393091}{7441903824221309673} a^{16} - \frac{1718957280466832468}{7441903824221309673} a^{15} - \frac{3242586522581152972}{7441903824221309673} a^{14} + \frac{2888515951671937625}{7441903824221309673} a^{13} + \frac{2397798984890117288}{7441903824221309673} a^{12} - \frac{2701616571996519232}{7441903824221309673} a^{11} - \frac{1134877141895887097}{7441903824221309673} a^{10} - \frac{1197710427250676783}{7441903824221309673} a^{9} - \frac{1813245637266975667}{7441903824221309673} a^{8} + \frac{21748519833571727}{2480634608073769891} a^{7} - \frac{3416982427592025560}{7441903824221309673} a^{6} + \frac{2614666586572246070}{7441903824221309673} a^{5} + \frac{1735702643196502478}{7441903824221309673} a^{4} + \frac{414368811585441094}{7441903824221309673} a^{3} - \frac{1245069567345624620}{7441903824221309673} a^{2} + \frac{245361007676806768}{2480634608073769891} a + \frac{505685620304989349}{7441903824221309673}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25210.0036513 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.2.4483962449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.12.9.4 | $x^{12} + 153 x^{8} + 7514 x^{4} + 132651$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 97 | Data not computed | ||||||