Normalized defining polynomial
\( x^{20} + 55 x^{18} + 1290 x^{16} - 4 x^{15} + 16820 x^{14} + 70 x^{13} + 134325 x^{12} + 3810 x^{11} + 681153 x^{10} + 36060 x^{9} + 2183600 x^{8} + 96710 x^{7} + 4242720 x^{6} - 105998 x^{5} + 4621740 x^{4} - 588360 x^{3} + 2809180 x^{2} - 205100 x + 1267924 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(957979102781406250000000000000000=2^{16}\cdot 5^{22}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{2506} a^{18} - \frac{19}{1253} a^{17} + \frac{144}{1253} a^{16} - \frac{5}{1253} a^{15} - \frac{17}{2506} a^{14} + \frac{111}{1253} a^{13} + \frac{76}{1253} a^{12} - \frac{141}{2506} a^{11} - \frac{267}{1253} a^{10} + \frac{319}{1253} a^{9} - \frac{395}{1253} a^{8} - \frac{157}{358} a^{7} - \frac{284}{1253} a^{6} - \frac{269}{1253} a^{5} - \frac{422}{1253} a^{4} + \frac{606}{1253} a^{3} - \frac{318}{1253} a^{2} + \frac{221}{1253} a - \frac{68}{179}$, $\frac{1}{3756768078576991982518799763917817859696718153723166} a^{19} - \frac{641673428473206492292237233735434582055686015489}{3756768078576991982518799763917817859696718153723166} a^{18} + \frac{104594043176269131066827031778346049511979938047533}{536681154082427426074114251988259694242388307674738} a^{17} + \frac{357033860462275405914280477293426830110154499245941}{1878384039288495991259399881958908929848359076861583} a^{16} - \frac{79650182398824646101671475887426673080269228103903}{1878384039288495991259399881958908929848359076861583} a^{15} + \frac{575500040332612380893179023655625344246262731913167}{3756768078576991982518799763917817859696718153723166} a^{14} + \frac{87098994849864104442321587939016706509072876547937}{1252256026192330660839599921305939286565572717907722} a^{13} + \frac{353632016932528818931034739970302472181969519250895}{3756768078576991982518799763917817859696718153723166} a^{12} - \frac{9388539976173841221164979841667928461446874993827}{268340577041213713037057125994129847121194153837369} a^{11} + \frac{137733780715724058967330907517635028439338927893887}{3756768078576991982518799763917817859696718153723166} a^{10} + \frac{1617412340215984059512703594939479076982036511469445}{3756768078576991982518799763917817859696718153723166} a^{9} - \frac{1819683601985223151120250497156336450552594876751867}{3756768078576991982518799763917817859696718153723166} a^{8} + \frac{166666381907509987917104303101774129101098161801763}{1252256026192330660839599921305939286565572717907722} a^{7} + \frac{848943284567401988617654662617951726014700016886835}{3756768078576991982518799763917817859696718153723166} a^{6} - \frac{1207412601215889479511837785112846808622648201326687}{3756768078576991982518799763917817859696718153723166} a^{5} + \frac{151228801593974581135899741154364814290204532009927}{626128013096165330419799960652969643282786358953861} a^{4} - \frac{144392655446293228868054290555670643586935584788090}{626128013096165330419799960652969643282786358953861} a^{3} + \frac{172172460374591811891712399364728653654408639794210}{626128013096165330419799960652969643282786358953861} a^{2} - \frac{332033993454623384357405027816579582913415601971042}{1878384039288495991259399881958908929848359076861583} a + \frac{9008037723808216799679357347975868307448951738563}{268340577041213713037057125994129847121194153837369}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81597325.15615189 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{5}, \sqrt{-19})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.6190247500000000.1, 10.0.30951237500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |