Normalized defining polynomial
\( x^{20} - 10 x^{19} + 47 x^{18} - 134 x^{17} + 244 x^{16} - 252 x^{15} + 14 x^{14} + 403 x^{13} - 595 x^{12} + 136 x^{11} + 768 x^{10} - 1227 x^{9} + 749 x^{8} + 44 x^{7} - 325 x^{6} + 108 x^{5} + 101 x^{4} - 108 x^{3} + 46 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95777233176300048828125=5^{15}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{4}{11} a^{13} + \frac{5}{11} a^{12} - \frac{3}{11} a^{10} - \frac{5}{11} a^{8} + \frac{1}{11} a^{7} + \frac{3}{11} a^{6} - \frac{2}{11} a^{5} + \frac{4}{11} a^{4} - \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{14} + \frac{5}{11} a^{13} - \frac{3}{11} a^{11} - \frac{5}{11} a^{9} + \frac{1}{11} a^{8} + \frac{3}{11} a^{7} - \frac{2}{11} a^{6} + \frac{4}{11} a^{5} - \frac{2}{11} a^{2} + \frac{1}{11} a$, $\frac{1}{11} a^{17} + \frac{5}{11} a^{14} - \frac{5}{11} a^{13} - \frac{5}{11} a^{12} + \frac{5}{11} a^{10} + \frac{1}{11} a^{9} + \frac{5}{11} a^{8} + \frac{2}{11} a^{7} + \frac{5}{11} a^{6} + \frac{3}{11} a^{5} + \frac{5}{11} a^{4} - \frac{2}{11} a^{3} + \frac{1}{11} a^{2} + \frac{3}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{14} + \frac{4}{11} a^{13} - \frac{3}{11} a^{12} + \frac{5}{11} a^{11} + \frac{5}{11} a^{10} + \frac{5}{11} a^{9} + \frac{5}{11} a^{8} - \frac{1}{11} a^{6} + \frac{4}{11} a^{5} + \frac{1}{11} a^{3} + \frac{3}{11} a^{2} + \frac{3}{11} a - \frac{5}{11}$, $\frac{1}{36033777461} a^{19} - \frac{416334066}{36033777461} a^{18} + \frac{815584958}{36033777461} a^{17} + \frac{1079724971}{36033777461} a^{16} + \frac{1154595515}{36033777461} a^{15} - \frac{15706689208}{36033777461} a^{14} + \frac{3698202506}{36033777461} a^{13} + \frac{11167085334}{36033777461} a^{12} - \frac{15397561822}{36033777461} a^{11} - \frac{540407523}{36033777461} a^{10} - \frac{8893608366}{36033777461} a^{9} + \frac{5996158226}{36033777461} a^{8} + \frac{127235556}{878872621} a^{7} - \frac{14540911413}{36033777461} a^{6} + \frac{10982332388}{36033777461} a^{5} - \frac{1823914368}{36033777461} a^{4} + \frac{14540034857}{36033777461} a^{3} + \frac{11792312817}{36033777461} a^{2} - \frac{11713136756}{36033777461} a + \frac{1065438470}{36033777461}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2080954354}{878872621} a^{19} - \frac{20530453129}{878872621} a^{18} + \frac{94757068684}{878872621} a^{17} - \frac{23945131881}{79897511} a^{16} + \frac{41865676087}{79897511} a^{15} - \frac{431854944850}{878872621} a^{14} - \frac{77330010775}{878872621} a^{13} + \frac{863618776193}{878872621} a^{12} - \frac{1093768275598}{878872621} a^{11} + \frac{31688466847}{878872621} a^{10} + \frac{1699822099519}{878872621} a^{9} - \frac{2279787922366}{878872621} a^{8} + \frac{1041911224736}{878872621} a^{7} + \frac{437966576813}{878872621} a^{6} - \frac{659196102755}{878872621} a^{5} + \frac{60893123256}{878872621} a^{4} + \frac{267862939808}{878872621} a^{3} - \frac{173490441705}{878872621} a^{2} + \frac{44290319787}{878872621} a - \frac{3871335134}{878872621} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7329.26903421 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times F_5$ (as 20T29):
| A solvable group of order 100 |
| The 25 conjugacy class representatives for $C_5\times F_5$ |
| Character table for $C_5\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |