Normalized defining polynomial
\( x^{20} - 3 x^{19} + 32 x^{18} - 132 x^{17} + 885 x^{16} - 1557 x^{15} + 9846 x^{14} - 1932 x^{13} + 84600 x^{12} + 111264 x^{11} + 637014 x^{10} + 929592 x^{9} + 3174528 x^{8} + 4041216 x^{7} + 9604608 x^{6} + 7981056 x^{5} + 14401536 x^{4} + 5898240 x^{3} + 11534336 x^{2} + 4194304 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(950120275075465393875600000000000000=2^{16}\cdot 3^{18}\cdot 5^{14}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{11} + \frac{1}{8} a^{10} + \frac{3}{8} a^{9} + \frac{5}{32} a^{8} - \frac{1}{32} a^{7} - \frac{7}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{5}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{13} + \frac{1}{128} a^{12} + \frac{1}{32} a^{11} - \frac{5}{32} a^{10} + \frac{37}{128} a^{9} - \frac{1}{128} a^{8} - \frac{23}{64} a^{7} - \frac{9}{32} a^{6} + \frac{5}{16} a^{5} - \frac{1}{2} a^{4} - \frac{21}{64} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{512} a^{14} + \frac{1}{512} a^{13} + \frac{1}{128} a^{12} - \frac{5}{128} a^{11} + \frac{37}{512} a^{10} - \frac{1}{512} a^{9} - \frac{23}{256} a^{8} + \frac{23}{128} a^{7} + \frac{5}{64} a^{6} - \frac{1}{8} a^{5} + \frac{43}{256} a^{4} + \frac{9}{32} a^{3} - \frac{1}{2} a$, $\frac{1}{2048} a^{15} + \frac{1}{2048} a^{14} + \frac{1}{512} a^{13} - \frac{5}{512} a^{12} + \frac{37}{2048} a^{11} - \frac{1}{2048} a^{10} - \frac{23}{1024} a^{9} - \frac{105}{512} a^{8} + \frac{69}{256} a^{7} - \frac{1}{32} a^{6} - \frac{213}{1024} a^{5} + \frac{9}{128} a^{4} + \frac{3}{8} a^{2}$, $\frac{1}{40960} a^{16} + \frac{9}{40960} a^{15} - \frac{1}{10240} a^{14} - \frac{17}{10240} a^{13} + \frac{261}{40960} a^{12} + \frac{871}{40960} a^{11} - \frac{4803}{20480} a^{10} + \frac{2287}{10240} a^{9} + \frac{1349}{5120} a^{8} - \frac{237}{640} a^{7} + \frac{1199}{4096} a^{6} - \frac{267}{640} a^{5} - \frac{7}{1280} a^{4} - \frac{119}{320} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{163840} a^{17} + \frac{1}{163840} a^{16} + \frac{1}{40960} a^{15} + \frac{11}{40960} a^{14} - \frac{31}{32768} a^{13} + \frac{1023}{163840} a^{12} + \frac{3433}{81920} a^{11} - \frac{2841}{40960} a^{10} - \frac{6499}{20480} a^{9} + \frac{869}{2560} a^{8} - \frac{17493}{81920} a^{7} - \frac{23}{10240} a^{6} - \frac{5}{16} a^{5} - \frac{67}{256} a^{4} + \frac{151}{320} a^{3} - \frac{37}{80} a^{2} + \frac{9}{20} a + \frac{1}{5}$, $\frac{1}{683540480} a^{18} + \frac{281}{683540480} a^{17} - \frac{1829}{170885120} a^{16} - \frac{33449}{170885120} a^{15} - \frac{18623}{136708096} a^{14} + \frac{871223}{683540480} a^{13} + \frac{4758693}{341770240} a^{12} + \frac{7272159}{170885120} a^{11} - \frac{16142859}{85442560} a^{10} + \frac{4435439}{10680320} a^{9} + \frac{9681661}{48824320} a^{8} + \frac{4772741}{21360640} a^{7} - \frac{1625465}{4272128} a^{6} - \frac{403019}{1068032} a^{5} - \frac{9411}{20860} a^{4} + \frac{18089}{47680} a^{3} + \frac{5149}{83440} a^{2} + \frac{1311}{20860} a + \frac{419}{1043}$, $\frac{1}{11676121160773778887475318687759151693695549440} a^{19} + \frac{3563330995177535127637373450101461013}{11676121160773778887475318687759151693695549440} a^{18} - \frac{72613786242604289958962737105027975799}{1459515145096722360934414835969893961711943680} a^{17} + \frac{4400068137742075946739555201093284843421}{417004327170492103124118524562826846203412480} a^{16} - \frac{2415506118869181766100942664869639920015083}{11676121160773778887475318687759151693695549440} a^{15} + \frac{1277362573854255899525258239588728559988487}{2335224232154755777495063737551830338739109888} a^{14} + \frac{3332049370114506105887346052189099394308907}{1167612116077377888747531868775915169369554944} a^{13} - \frac{24455736490466681738468056656958186057837163}{2919030290193444721868829671939787923423887360} a^{12} + \frac{40289039595031657706351101764773040899652767}{1459515145096722360934414835969893961711943680} a^{11} - \frac{6195423988808238213240901531493071154590847}{72975757254836118046720741798494698085597184} a^{10} + \frac{1919293884110095256208414603707122967597636587}{5838060580386889443737659343879575846847774720} a^{9} + \frac{3763389855505523671837141178719645172047189}{291903029019344472186882967193978792342388736} a^{8} - \frac{28746020873703720511194877355571071980007329}{72975757254836118046720741798494698085597184} a^{7} + \frac{43515780828369418830828737519087789709133213}{91219696568545147558400927248118372606996480} a^{6} - \frac{1883844194685965569534873249360924799918717}{4560984828427257377920046362405918630349824} a^{5} + \frac{460376567035738772503657276837865886598791}{1425307758883517930600014488251849571984320} a^{4} - \frac{7401151620368941967343785938468376314081}{22270433732554967665625226378935149562255} a^{3} + \frac{55156546366685486205041579262454957665127}{356326939720879482650003622062962392996080} a^{2} - \frac{3211466966034383491100294429620799847671}{8908173493021987066250090551574059824902} a - \frac{10737231487443694954986725200423204700261}{22270433732554967665625226378935149562255}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16331936688.22532 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{57}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{-15}, \sqrt{57})\), 5.1.162000.1, 10.2.194948226468000000.1, 10.0.393660000000.1, 10.0.324913710780000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |