Normalized defining polynomial
\( x^{20} + 67 x^{18} + 1937 x^{16} + 31131 x^{14} + 303689 x^{12} + 1822723 x^{10} + 6823873 x^{8} + 11330859 x^{6} + 71316345 x^{4} - 1180449005 x^{2} + 24916306801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(949644892545940254829738055123773440000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(799,·)$, $\chi_{4620}(1,·)$, $\chi_{4620}(2309,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(2059,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(2899,·)$, $\chi_{4620}(3989,·)$, $\chi_{4620}(3739,·)$, $\chi_{4620}(3319,·)$, $\chi_{4620}(1889,·)$, $\chi_{4620}(3611,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(1511,·)$, $\chi_{4620}(1469,·)$, $\chi_{4620}(629,·)$, $\chi_{4620}(3191,·)$, $\chi_{4620}(251,·)$, $\chi_{4620}(2941,·)$, $\chi_{4620}(4031,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{157849} a^{11} + \frac{44}{157849} a^{9} + \frac{704}{157849} a^{7} + \frac{4928}{157849} a^{5} + \frac{14080}{157849} a^{3} + \frac{11264}{157849} a$, $\frac{1}{51062415161} a^{12} + \frac{23253683328}{51062415161} a^{10} + \frac{11023859166}{51062415161} a^{8} + \frac{1146777913}{51062415161} a^{6} + \frac{13847633303}{51062415161} a^{4} - \frac{23367165451}{51062415161} a^{2} - \frac{112069}{323489}$, $\frac{1}{51062415161} a^{13} + \frac{52}{51062415161} a^{11} + \frac{9110098242}{51062415161} a^{9} + \frac{21589018290}{51062415161} a^{7} + \frac{3756070459}{51062415161} a^{5} - \frac{23021679199}{51062415161} a^{3} + \frac{3011375485}{51062415161} a$, $\frac{1}{51062415161} a^{14} + \frac{25416529050}{51062415161} a^{10} + \frac{10034908429}{51062415161} a^{8} - \frac{4813965856}{51062415161} a^{6} + \frac{22837616460}{51062415161} a^{4} - \frac{7393984927}{51062415161} a^{2} + \frac{4786}{323489}$, $\frac{1}{51062415161} a^{15} - \frac{1680}{51062415161} a^{11} + \frac{15080689851}{51062415161} a^{9} + \frac{1080700945}{2220105007} a^{7} - \frac{24783846208}{51062415161} a^{5} + \frac{24321200122}{51062415161} a^{3} + \frac{15915130321}{51062415161} a$, $\frac{1}{51062415161} a^{16} + \frac{18521082726}{51062415161} a^{10} + \frac{9282817172}{51062415161} a^{8} + \frac{12493686675}{51062415161} a^{6} + \frac{3883835746}{51062415161} a^{4} - \frac{24987983711}{51062415161} a^{2} - \frac{5322}{323489}$, $\frac{1}{51062415161} a^{17} + \frac{43520}{51062415161} a^{11} + \frac{11355734684}{51062415161} a^{9} - \frac{5402048294}{51062415161} a^{7} - \frac{19261478715}{51062415161} a^{5} - \frac{25465776964}{51062415161} a^{3} + \frac{19202659084}{51062415161} a$, $\frac{1}{51062415161} a^{18} + \frac{17063375983}{51062415161} a^{10} + \frac{18699900142}{51062415161} a^{8} + \frac{12005774983}{51062415161} a^{6} + \frac{15219021759}{51062415161} a^{4} - \frac{817259872}{51062415161} a^{2} - \frac{773}{323489}$, $\frac{1}{51062415161} a^{19} - \frac{21789}{51062415161} a^{11} - \frac{17215789572}{51062415161} a^{9} - \frac{958693670}{51062415161} a^{7} - \frac{24469843651}{51062415161} a^{5} - \frac{4794557127}{51062415161} a^{3} - \frac{3303855081}{51062415161} a$
Class group and class number
$C_{2}\times C_{4}\times C_{2910820}$, which has order $23286560$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11184526.893275889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-1155}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{-21}, \sqrt{55})\), \(\Q(\zeta_{11})^+\), 10.0.896474439937004544.3, 10.0.30094051633627471875.1, 10.10.7545432611200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |