Normalized defining polynomial
\( x^{20} + 275 x^{18} + 28325 x^{16} + 1361250 x^{14} + 31501250 x^{12} + 347703125 x^{10} + 1958687500 x^{8} + 5813671875 x^{6} + 8791406250 x^{4} + 5908203125 x^{2} + 1181640625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(949644892545940254829738055123773440000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(3079,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(139,·)$, $\chi_{4620}(3599,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(659,·)$, $\chi_{4620}(1301,·)$, $\chi_{4620}(4439,·)$, $\chi_{4620}(2339,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(3821,·)$, $\chi_{4620}(239,·)$, $\chi_{4620}(881,·)$, $\chi_{4620}(2659,·)$, $\chi_{4620}(2561,·)$, $\chi_{4620}(1399,·)$, $\chi_{4620}(1721,·)$, $\chi_{4620}(2941,·)$, $\chi_{4620}(2239,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{625} a^{8}$, $\frac{1}{625} a^{9}$, $\frac{1}{34375} a^{10}$, $\frac{1}{34375} a^{11}$, $\frac{1}{171875} a^{12}$, $\frac{1}{171875} a^{13}$, $\frac{1}{859375} a^{14}$, $\frac{1}{859375} a^{15}$, $\frac{1}{184765625} a^{16} + \frac{17}{36953125} a^{14} - \frac{1}{671875} a^{12} + \frac{4}{1478125} a^{10} - \frac{3}{5375} a^{6} - \frac{14}{1075} a^{4} + \frac{19}{215} a^{2} - \frac{3}{43}$, $\frac{1}{184765625} a^{17} + \frac{17}{36953125} a^{15} - \frac{1}{671875} a^{13} + \frac{4}{1478125} a^{11} - \frac{3}{5375} a^{7} - \frac{14}{1075} a^{5} + \frac{19}{215} a^{3} - \frac{3}{43} a$, $\frac{1}{1402889545169921875} a^{18} - \frac{4994864}{2244623272271875} a^{16} - \frac{16772244999}{56115581806796875} a^{14} + \frac{2190436046}{2244623272271875} a^{12} + \frac{355784383}{89784930890875} a^{10} - \frac{17531407367}{40811332223125} a^{8} + \frac{4466090917}{1632453288925} a^{6} - \frac{3275158719}{326490657785} a^{4} + \frac{18279737144}{326490657785} a^{2} - \frac{16500676438}{65298131557}$, $\frac{1}{1402889545169921875} a^{19} - \frac{4994864}{2244623272271875} a^{17} - \frac{16772244999}{56115581806796875} a^{15} + \frac{2190436046}{2244623272271875} a^{13} + \frac{355784383}{89784930890875} a^{11} - \frac{17531407367}{40811332223125} a^{9} + \frac{4466090917}{1632453288925} a^{7} - \frac{3275158719}{326490657785} a^{5} + \frac{18279737144}{326490657785} a^{3} - \frac{16500676438}{65298131557} a$
Class group and class number
$C_{2}\times C_{4}\times C_{1998964}$, which has order $15991712$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5868059.799558259 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-385}) \), \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{21}, \sqrt{-165})\), \(\Q(\zeta_{11})^+\), 10.0.126816085896438400000.1, 10.0.1833540124521600000.1, 10.10.875463320250981.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||