Normalized defining polynomial
\( x^{20} - 2 x^{19} + 69 x^{18} - 136 x^{17} + 5549 x^{16} - 10962 x^{15} + 206059 x^{14} - 401156 x^{13} + 7815333 x^{12} - 15229510 x^{11} + 163217351 x^{10} - 307737088 x^{9} + 3347838129 x^{8} - 6382780148 x^{7} + 35515197703 x^{6} - 81919808394 x^{5} + 398300256029 x^{4} - 900155631148 x^{3} + 2015103544347 x^{2} - 1463656482026 x + 3241961064409 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(949644892545940254829738055123773440000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(811,·)$, $\chi_{4620}(391,·)$, $\chi_{4620}(1289,·)$, $\chi_{4620}(4171,·)$, $\chi_{4620}(1231,·)$, $\chi_{4620}(2129,·)$, $\chi_{4620}(2969,·)$, $\chi_{4620}(29,·)$, $\chi_{4620}(2911,·)$, $\chi_{4620}(419,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(839,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(2099,·)$, $\chi_{4620}(2549,·)$, $\chi_{4620}(1259,·)$, $\chi_{4620}(3359,·)$, $\chi_{4620}(2941,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{1}{11}$, $\frac{1}{11} a^{12} + \frac{1}{11} a$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{2}$, $\frac{1}{11} a^{14} + \frac{1}{11} a^{3}$, $\frac{1}{473} a^{15} + \frac{20}{473} a^{14} - \frac{6}{473} a^{13} + \frac{15}{473} a^{12} + \frac{20}{473} a^{11} + \frac{1}{473} a^{10} + \frac{197}{473} a^{9} + \frac{166}{473} a^{8} + \frac{186}{473} a^{7} - \frac{87}{473} a^{6} + \frac{186}{473} a^{5} + \frac{156}{473} a^{4} - \frac{212}{473} a^{3} - \frac{159}{473} a^{2} + \frac{3}{473} a + \frac{208}{473}$, $\frac{1}{31846727336237} a^{16} + \frac{2308057653}{2895157030567} a^{15} + \frac{815233040965}{31846727336237} a^{14} - \frac{165021390354}{31846727336237} a^{13} + \frac{998564313136}{31846727336237} a^{12} + \frac{1239702815057}{31846727336237} a^{11} + \frac{156945935262}{31846727336237} a^{10} - \frac{6799154577848}{31846727336237} a^{9} - \frac{14501651641647}{31846727336237} a^{8} + \frac{11747059631202}{31846727336237} a^{7} - \frac{9783115760357}{31846727336237} a^{6} - \frac{87148424159}{31846727336237} a^{5} + \frac{13661376136799}{31846727336237} a^{4} + \frac{205351353203}{31846727336237} a^{3} - \frac{844471564102}{31846727336237} a^{2} - \frac{15801525413268}{31846727336237} a - \frac{11247551321426}{31846727336237}$, $\frac{1}{31846727336237} a^{17} - \frac{2338051682}{31846727336237} a^{15} + \frac{593502587094}{31846727336237} a^{14} - \frac{719687166790}{31846727336237} a^{13} - \frac{926651998967}{31846727336237} a^{12} - \frac{962766823532}{31846727336237} a^{11} - \frac{1197115654947}{31846727336237} a^{10} + \frac{5961299478753}{31846727336237} a^{9} + \frac{9411078254157}{31846727336237} a^{8} + \frac{5944098311649}{31846727336237} a^{7} - \frac{9782745461733}{31846727336237} a^{6} - \frac{2366389799617}{31846727336237} a^{5} + \frac{6829686887175}{31846727336237} a^{4} - \frac{13055768602281}{31846727336237} a^{3} + \frac{3852538268765}{31846727336237} a^{2} + \frac{13268157529034}{31846727336237} a - \frac{64880727819}{2895157030567}$, $\frac{1}{31846727336237} a^{18} - \frac{12395857036}{31846727336237} a^{15} + \frac{1262216268824}{31846727336237} a^{14} - \frac{79800949189}{31846727336237} a^{13} - \frac{88564682241}{31846727336237} a^{12} - \frac{1019845229316}{31846727336237} a^{11} + \frac{28988354310}{2895157030567} a^{10} + \frac{1042599382793}{2895157030567} a^{9} + \frac{872880449831}{2895157030567} a^{8} - \frac{12824633528838}{31846727336237} a^{7} - \frac{1013443929649}{2895157030567} a^{6} + \frac{129385124613}{2895157030567} a^{5} - \frac{1716017417600}{31846727336237} a^{4} - \frac{12294680611208}{31846727336237} a^{3} - \frac{2724614686854}{31846727336237} a^{2} + \frac{11558719110134}{31846727336237} a - \frac{109132935933}{740621565959}$, $\frac{1}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{19} - \frac{103405301370656546338175037128779876377680831221195062674}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{18} - \frac{165983491657711086800408094788212599984044598078747597499}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{17} + \frac{140640836477855181851938348533914689548854303886471134936}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{16} - \frac{3964700171254383715972411488229771812019378258021678311626492032669}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{15} - \frac{77765376346751063804865759006514242534132184121905798335475734295059}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{14} - \frac{193753013555012886890802440517075519795411167551841766952029266248364}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{13} + \frac{382013395254586233566526944677963362301292710713715676881302362261438}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{12} - \frac{90656671598303073598905673486478652363020241086203069616743018190938}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{11} - \frac{23813858777912092666111073345111904948617360512361598737085620143849}{1058626348489644266587551984847341104640037541708579521006424082229807} a^{10} + \frac{283413847957034623842410503568609668933309406954962582653825275699409}{1058626348489644266587551984847341104640037541708579521006424082229807} a^{9} - \frac{107725913244250033484865571096480036301420237445739712812196183250110}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{8} - \frac{1950801312262349241270850980242800112772386063048687301022038248125047}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{7} + \frac{2711404228740373120856927090439457978588743562641381153691434273487226}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{6} + \frac{4674322363113414752834301976578676119907376012256037874499682832223313}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{5} - \frac{3433460162818675336310901912207556408182160642067677043070469678935276}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{4} - \frac{3112810690530149515700835624685505220184866837246844884338087804680100}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{3} + \frac{4480689679534978624798975314996055713733798101908719534687695369326844}{11644889833386086932463071833320752151040412958794374731070664904527877} a^{2} - \frac{5372633982617230613172176930659332658957177404677628472742665590383609}{11644889833386086932463071833320752151040412958794374731070664904527877} a - \frac{5039113945477087589135254325416219964825449777747725558126298085957834}{11644889833386086932463071833320752151040412958794374731070664904527877}$
Class group and class number
$C_{2}\times C_{4}\times C_{2989640}$, which has order $23917120$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5362955.973727969 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |