Normalized defining polynomial
\( x^{20} + 179 x^{18} + 13913 x^{16} + 616203 x^{14} + 17167649 x^{12} + 313909091 x^{10} + 3828194857 x^{8} + 31277505147 x^{6} + 173004197745 x^{4} + 681416044115 x^{2} + 2174170893049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(949644892545940254829738055123773440000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(139,·)$, $\chi_{4620}(2309,·)$, $\chi_{4620}(3079,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(3851,·)$, $\chi_{4620}(911,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(3989,·)$, $\chi_{4620}(1469,·)$, $\chi_{4620}(1889,·)$, $\chi_{4620}(2659,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(71,·)$, $\chi_{4620}(4271,·)$, $\chi_{4620}(629,·)$, $\chi_{4620}(1399,·)$, $\chi_{4620}(2171,·)$, $\chi_{4620}(2941,·)$, $\chi_{4620}(2239,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{1474507} a^{11} + \frac{88}{1474507} a^{9} + \frac{2816}{1474507} a^{7} + \frac{39424}{1474507} a^{5} + \frac{225280}{1474507} a^{3} + \frac{360448}{1474507} a$, $\frac{1}{638206441289} a^{12} + \frac{189751356904}{638206441289} a^{10} - \frac{136846042840}{638206441289} a^{8} - \frac{2450591210}{638206441289} a^{6} + \frac{245510064301}{638206441289} a^{4} - \frac{294373166046}{638206441289} a^{2} + \frac{62673}{432827}$, $\frac{1}{638206441289} a^{13} + \frac{104}{638206441289} a^{11} - \frac{241597967726}{638206441289} a^{9} - \frac{163479981117}{638206441289} a^{7} - \frac{94282070530}{638206441289} a^{5} + \frac{225610908463}{638206441289} a^{3} - \frac{96744009637}{638206441289} a$, $\frac{1}{638206441289} a^{14} - \frac{191339405783}{638206441289} a^{10} + \frac{27966765885}{638206441289} a^{8} + \frac{160579415310}{638206441289} a^{6} + \frac{220821872719}{638206441289} a^{4} - \frac{115843922725}{638206441289} a^{2} - \frac{25587}{432827}$, $\frac{1}{638206441289} a^{15} - \frac{6720}{638206441289} a^{11} + \frac{272466409915}{638206441289} a^{9} - \frac{13570248369}{27748106143} a^{7} - \frac{14845503549}{638206441289} a^{5} - \frac{277274110434}{638206441289} a^{3} + \frac{86907353830}{638206441289} a$, $\frac{1}{638206441289} a^{16} + \frac{265115109373}{638206441289} a^{10} - \frac{262041699838}{638206441289} a^{8} + \frac{110549038765}{638206441289} a^{6} - \frac{213292739779}{638206441289} a^{4} - \frac{299006920679}{638206441289} a^{2} + \frac{21889}{432827}$, $\frac{1}{638206441289} a^{17} - \frac{84667}{638206441289} a^{11} + \frac{21459552335}{638206441289} a^{9} + \frac{247698930255}{638206441289} a^{7} - \frac{207813582786}{638206441289} a^{5} - \frac{176525103392}{638206441289} a^{3} - \frac{282318761649}{638206441289} a$, $\frac{1}{638206441289} a^{18} + \frac{128847975306}{638206441289} a^{10} - \frac{96475043519}{638206441289} a^{8} - \frac{274926140931}{638206441289} a^{6} + \frac{40296286645}{638206441289} a^{4} - \frac{99016719014}{638206441289} a^{2} - \frac{124129}{432827}$, $\frac{1}{638206441289} a^{19} + \frac{138503}{638206441289} a^{11} + \frac{52631261019}{638206441289} a^{9} + \frac{29030515262}{638206441289} a^{7} - \frac{171755615676}{638206441289} a^{5} - \frac{34328992556}{638206441289} a^{3} - \frac{9007391536}{27748106143} a$
Class group and class number
$C_{2}\times C_{44}\times C_{1446764}$, which has order $127315232$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1746210.0427691017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-385}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1155}) \), \(\Q(\sqrt{3}, \sqrt{-385})\), \(\Q(\zeta_{11})^+\), 10.0.126816085896438400000.1, 10.10.53339349076992.1, 10.0.30094051633627471875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |