Normalized defining polynomial
\( x^{20} - 2 x^{19} + 3 x^{18} - 4 x^{17} + 3470 x^{16} - 6936 x^{15} + 10402 x^{14} - 13868 x^{13} + 3898134 x^{12} - 7782400 x^{11} + 11666666 x^{10} - 14347420 x^{9} + 1557827049 x^{8} - 2839812368 x^{7} + 4121797687 x^{6} - 10964008446 x^{5} + 179590101080 x^{4} - 540414511564 x^{3} + 901238922048 x^{2} - 532283743532 x + 1707629255641 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(949644892545940254829738055123773440000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(839,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(2059,·)$, $\chi_{4620}(461,·)$, $\chi_{4620}(4241,·)$, $\chi_{4620}(2899,·)$, $\chi_{4620}(3739,·)$, $\chi_{4620}(2141,·)$, $\chi_{4620}(799,·)$, $\chi_{4620}(419,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(41,·)$, $\chi_{4620}(1259,·)$, $\chi_{4620}(2099,·)$, $\chi_{4620}(3319,·)$, $\chi_{4620}(3359,·)$, $\chi_{4620}(2941,·)$, $\chi_{4620}(3401,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{1}{11}$, $\frac{1}{11} a^{12} + \frac{1}{11} a$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{2}$, $\frac{1}{11} a^{14} + \frac{1}{11} a^{3}$, $\frac{1}{451} a^{15} + \frac{19}{451} a^{14} - \frac{7}{451} a^{13} + \frac{6}{451} a^{12} + \frac{7}{451} a^{11} + \frac{8}{451} a^{10} + \frac{146}{451} a^{9} - \frac{47}{451} a^{8} + \frac{80}{451} a^{7} + \frac{107}{451} a^{6} - \frac{129}{451} a^{5} - \frac{13}{451} a^{4} + \frac{5}{41} a^{3} - \frac{4}{11} a^{2} - \frac{46}{451} a - \frac{73}{451}$, $\frac{1}{14464344187051} a^{16} - \frac{7151951533}{14464344187051} a^{15} - \frac{365845729701}{14464344187051} a^{14} - \frac{32102927214}{14464344187051} a^{13} + \frac{481106960993}{14464344187051} a^{12} - \frac{144007219402}{14464344187051} a^{11} + \frac{243007443526}{14464344187051} a^{10} + \frac{7118916537512}{14464344187051} a^{9} + \frac{6287060637881}{14464344187051} a^{8} - \frac{2191841487595}{14464344187051} a^{7} - \frac{53971990797}{14464344187051} a^{6} + \frac{92748229585}{1314940380641} a^{5} + \frac{16187235125}{1314940380641} a^{4} - \frac{2450020443554}{14464344187051} a^{3} + \frac{2055349744652}{14464344187051} a^{2} + \frac{5404806681646}{14464344187051} a + \frac{2716374123253}{14464344187051}$, $\frac{1}{14464344187051} a^{17} - \frac{10490303790}{14464344187051} a^{15} + \frac{2447589520}{352788882611} a^{14} + \frac{42168333890}{1314940380641} a^{13} + \frac{591437829864}{14464344187051} a^{12} - \frac{591698881544}{14464344187051} a^{11} + \frac{154557910642}{14464344187051} a^{10} + \frac{5090633381105}{14464344187051} a^{9} - \frac{883382585808}{14464344187051} a^{8} + \frac{4501361659341}{14464344187051} a^{7} - \frac{1065192144133}{14464344187051} a^{6} + \frac{267327991466}{14464344187051} a^{5} - \frac{5582318273616}{14464344187051} a^{4} + \frac{2020740013261}{14464344187051} a^{3} - \frac{6314783171892}{14464344187051} a^{2} + \frac{3456376332947}{14464344187051} a - \frac{4611934952623}{14464344187051}$, $\frac{1}{14464344187051} a^{18} - \frac{12830181707}{14464344187051} a^{15} + \frac{219115000758}{14464344187051} a^{14} + \frac{67840173224}{14464344187051} a^{13} - \frac{437682754812}{14464344187051} a^{12} + \frac{603196394236}{14464344187051} a^{11} - \frac{1529357532}{1314940380641} a^{10} + \frac{1585878103}{32071716601} a^{9} - \frac{168013794165}{1314940380641} a^{8} + \frac{30813772920}{352788882611} a^{7} - \frac{79278989685}{1314940380641} a^{6} - \frac{21852291765}{1314940380641} a^{5} + \frac{156881365672}{14464344187051} a^{4} + \frac{854225444561}{14464344187051} a^{3} - \frac{18407098381}{14464344187051} a^{2} + \frac{4298344105885}{14464344187051} a - \frac{1628688525853}{14464344187051}$, $\frac{1}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{19} + \frac{61942060481385781821678913383023768023783913486548655348}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{18} + \frac{18195711777563385004026022711636885945104964276040324050}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{17} + \frac{25258925055436235412871122914002440130165574058584449632}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{16} + \frac{41459054464717341340663755820861476491446032408913324409020981220}{48575939020871590511411418740492742386157069118270606988380766246653} a^{15} + \frac{62205290738112632674374600362815716934769778161449785020817810361828}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{14} - \frac{31095731165938136469061410923245201438359301263235562359813186134826}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{13} + \frac{144598841740693391354607876954221154315111553054180601911637762064565}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{12} + \frac{102931582643538859726396691176485916367300355708688825197334426287119}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{11} + \frac{312550781622996493772240841913657869158890992254315371927785781306}{7216381184918839388613226287390274367788300733756387290956787890301} a^{10} + \frac{85530913530402619879210476740853200352257057929565557647137039138535}{295871628581672414933142277783001249079320330084011878929228303502341} a^{9} - \frac{153579558736946461783380551033963078216651568049598198763692363971851}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{8} + \frac{304852635045005807667844617811735503186733105685209019053077046349532}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{7} - \frac{763426949504513893962892125886973307262990093791485272026718180595100}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{6} + \frac{375495724102552398816841826237274330650981584907402611726613332601802}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{5} + \frac{1565346625400451439063459774178099948455704648520542404931651375751849}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{4} - \frac{1401561663529818537232556828144808501456361627993397072911254249961}{79380193034107233274745489161293018045671308071320260200524666793311} a^{3} + \frac{173109776027454110412508321017927895704077465126964040905386983548869}{3254587914398396564264565055613013739872523630924130668221511338525751} a^{2} - \frac{1060586660472351131242178002907775875785929205478834715993876696227544}{3254587914398396564264565055613013739872523630924130668221511338525751} a + \frac{826084624432449211045757752538011791468783109336199703154426580657985}{3254587914398396564264565055613013739872523630924130668221511338525751}$
Class group and class number
$C_{2}\times C_{4}\times C_{1591260}$, which has order $12730080$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11184526.893275889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{55}, \sqrt{-105})\), \(\Q(\zeta_{11})^+\), 10.0.9630096522760791.1, 10.10.7545432611200000.1, 10.0.2801482624803139200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |