Normalized defining polynomial
\( x^{20} + 287 x^{18} + 34937 x^{16} + 2345091 x^{14} + 94428929 x^{12} + 2323887083 x^{10} + 34106092153 x^{8} + 278664715539 x^{6} + 1112289528945 x^{4} + 1641786500795 x^{2} + 522296735401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(949644892545940254829738055123773440000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4620=2^{2}\cdot 3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4620}(1,·)$, $\chi_{4620}(3079,·)$, $\chi_{4620}(1289,·)$, $\chi_{4620}(139,·)$, $\chi_{4620}(2129,·)$, $\chi_{4620}(2969,·)$, $\chi_{4620}(3611,·)$, $\chi_{4620}(29,·)$, $\chi_{4620}(2659,·)$, $\chi_{4620}(421,·)$, $\chi_{4620}(1681,·)$, $\chi_{4620}(1511,·)$, $\chi_{4620}(2239,·)$, $\chi_{4620}(841,·)$, $\chi_{4620}(1399,·)$, $\chi_{4620}(2549,·)$, $\chi_{4620}(3191,·)$, $\chi_{4620}(251,·)$, $\chi_{4620}(2941,·)$, $\chi_{4620}(4031,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{2401} a^{8}$, $\frac{1}{2401} a^{9}$, $\frac{1}{16807} a^{10}$, $\frac{1}{722701} a^{11} - \frac{3}{14749} a^{9} + \frac{4}{14749} a^{7} + \frac{2}{301} a^{5} + \frac{20}{301} a^{3} + \frac{8}{43} a$, $\frac{1}{116354861} a^{12} - \frac{365}{16622123} a^{10} + \frac{348}{2374589} a^{8} - \frac{158}{339227} a^{6} + \frac{52}{6923} a^{4} - \frac{164}{6923} a^{2} - \frac{1}{23}$, $\frac{1}{116354861} a^{13} + \frac{3}{16622123} a^{11} - \frac{457}{2374589} a^{9} + \frac{325}{339227} a^{7} - \frac{418}{48461} a^{5} + \frac{39}{989} a^{3} - \frac{66}{989} a$, $\frac{1}{814484027} a^{14} - \frac{351}{16622123} a^{10} + \frac{270}{2374589} a^{8} + \frac{8}{48461} a^{6} + \frac{170}{48461} a^{4} + \frac{426}{6923} a^{2} + \frac{3}{23}$, $\frac{1}{814484027} a^{15} - \frac{6}{16622123} a^{11} - \frac{52}{2374589} a^{9} + \frac{447}{339227} a^{7} + \frac{55}{48461} a^{5} + \frac{403}{6923} a^{3} - \frac{78}{989} a$, $\frac{1}{5701388189} a^{16} - \frac{264}{16622123} a^{10} - \frac{432}{2374589} a^{8} + \frac{96}{339227} a^{6} - \frac{380}{48461} a^{4} - \frac{73}{6923} a^{2} - \frac{6}{23}$, $\frac{1}{5701388189} a^{17} - \frac{11}{16622123} a^{11} + \frac{27}{339227} a^{9} + \frac{17}{48461} a^{7} + \frac{195}{48461} a^{5} + \frac{6}{989} a^{3} - \frac{212}{989} a$, $\frac{1}{39909717323} a^{18} + \frac{130}{16622123} a^{10} - \frac{9}{2374589} a^{8} + \frac{435}{339227} a^{6} + \frac{90}{48461} a^{4} - \frac{38}{6923} a^{2} - \frac{11}{23}$, $\frac{1}{39909717323} a^{19} - \frac{8}{16622123} a^{11} - \frac{78}{2374589} a^{9} - \frac{117}{339227} a^{7} + \frac{136}{48461} a^{5} + \frac{169}{6923} a^{3} + \frac{401}{989} a$
Class group and class number
$C_{2}\times C_{4}\times C_{5577220}$, which has order $44617760$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5362955.973727969 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-385}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-21}, \sqrt{165})\), \(\Q(\zeta_{11})^+\), 10.0.126816085896438400000.1, 10.10.1790566527853125.1, 10.0.896474439937004544.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |