Properties

Label 20.0.94857600135...0000.2
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{10}\cdot 11^{16}\cdot 17^{10}$
Root discriminant $125.56$
Ramified primes $2, 5, 11, 17$
Class number $1987100$ (GRH)
Class group $[10, 198710]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7273808849, -2548342424, 4154165587, -1123862306, 1025221284, -234163102, 155208869, -32155744, 17149330, -3565206, 1595106, -300174, 99688, -15442, 7336, -2164, 398, 22, 7, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 7*x^18 + 22*x^17 + 398*x^16 - 2164*x^15 + 7336*x^14 - 15442*x^13 + 99688*x^12 - 300174*x^11 + 1595106*x^10 - 3565206*x^9 + 17149330*x^8 - 32155744*x^7 + 155208869*x^6 - 234163102*x^5 + 1025221284*x^4 - 1123862306*x^3 + 4154165587*x^2 - 2548342424*x + 7273808849)
 
gp: K = bnfinit(x^20 - 6*x^19 + 7*x^18 + 22*x^17 + 398*x^16 - 2164*x^15 + 7336*x^14 - 15442*x^13 + 99688*x^12 - 300174*x^11 + 1595106*x^10 - 3565206*x^9 + 17149330*x^8 - 32155744*x^7 + 155208869*x^6 - 234163102*x^5 + 1025221284*x^4 - 1123862306*x^3 + 4154165587*x^2 - 2548342424*x + 7273808849, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 7 x^{18} + 22 x^{17} + 398 x^{16} - 2164 x^{15} + 7336 x^{14} - 15442 x^{13} + 99688 x^{12} - 300174 x^{11} + 1595106 x^{10} - 3565206 x^{9} + 17149330 x^{8} - 32155744 x^{7} + 155208869 x^{6} - 234163102 x^{5} + 1025221284 x^{4} - 1123862306 x^{3} + 4154165587 x^{2} - 2548342424 x + 7273808849 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(948576001354145151944312834959360000000000=2^{20}\cdot 5^{10}\cdot 11^{16}\cdot 17^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $125.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3740=2^{2}\cdot 5\cdot 11\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{3740}(1,·)$, $\chi_{3740}(2821,·)$, $\chi_{3740}(2379,·)$, $\chi_{3740}(2381,·)$, $\chi_{3740}(339,·)$, $\chi_{3740}(2039,·)$, $\chi_{3740}(3161,·)$, $\chi_{3740}(3059,·)$, $\chi_{3740}(2721,·)$, $\chi_{3740}(1699,·)$, $\chi_{3740}(1259,·)$, $\chi_{3740}(3501,·)$, $\chi_{3740}(1939,·)$, $\chi_{3740}(3061,·)$, $\chi_{3740}(3639,·)$, $\chi_{3740}(441,·)$, $\chi_{3740}(2619,·)$, $\chi_{3740}(1599,·)$, $\chi_{3740}(1021,·)$, $\chi_{3740}(1461,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{37} a^{15} + \frac{14}{37} a^{14} + \frac{13}{37} a^{13} + \frac{4}{37} a^{12} + \frac{15}{37} a^{11} - \frac{15}{37} a^{10} - \frac{18}{37} a^{9} + \frac{6}{37} a^{8} + \frac{14}{37} a^{7} + \frac{9}{37} a^{6} + \frac{9}{37} a^{5} + \frac{12}{37} a^{4} - \frac{16}{37} a^{3} - \frac{14}{37} a^{2} - \frac{14}{37} a - \frac{2}{37}$, $\frac{1}{37} a^{16} + \frac{2}{37} a^{14} + \frac{7}{37} a^{13} - \frac{4}{37} a^{12} - \frac{3}{37} a^{11} + \frac{7}{37} a^{10} - \frac{1}{37} a^{9} + \frac{4}{37} a^{8} - \frac{2}{37} a^{7} - \frac{6}{37} a^{6} - \frac{3}{37} a^{5} + \frac{1}{37} a^{4} - \frac{12}{37} a^{3} - \frac{3}{37} a^{2} + \frac{9}{37} a - \frac{9}{37}$, $\frac{1}{37} a^{17} + \frac{16}{37} a^{14} + \frac{7}{37} a^{13} - \frac{11}{37} a^{12} + \frac{14}{37} a^{11} - \frac{8}{37} a^{10} + \frac{3}{37} a^{9} - \frac{14}{37} a^{8} + \frac{3}{37} a^{7} + \frac{16}{37} a^{6} - \frac{17}{37} a^{5} + \frac{1}{37} a^{4} - \frac{8}{37} a^{3} - \frac{18}{37} a + \frac{4}{37}$, $\frac{1}{118885233560860870490259239} a^{18} - \frac{950822519265042529913483}{118885233560860870490259239} a^{17} - \frac{1117170719912119708134174}{118885233560860870490259239} a^{16} + \frac{30577622671423703151282}{118885233560860870490259239} a^{15} - \frac{19301042787626922494576896}{118885233560860870490259239} a^{14} + \frac{36528796005468723595710798}{118885233560860870490259239} a^{13} + \frac{1422638903851506751942996}{118885233560860870490259239} a^{12} + \frac{30630382205623487768781638}{118885233560860870490259239} a^{11} + \frac{8642503520020537888578575}{118885233560860870490259239} a^{10} + \frac{55909676282478760839992317}{118885233560860870490259239} a^{9} + \frac{47539193582860859463596732}{118885233560860870490259239} a^{8} + \frac{24941058924516117818713164}{118885233560860870490259239} a^{7} + \frac{37272286098225709649592402}{118885233560860870490259239} a^{6} - \frac{6952578194574844302897083}{118885233560860870490259239} a^{5} + \frac{39419909874868348911346601}{118885233560860870490259239} a^{4} - \frac{30247271741238035367877577}{118885233560860870490259239} a^{3} - \frac{1237257252755860096827253}{118885233560860870490259239} a^{2} - \frac{7375269576602910621132102}{118885233560860870490259239} a + \frac{5260636174463948579723311}{118885233560860870490259239}$, $\frac{1}{4213870604165472439381617710210289628039189322595147550511} a^{19} - \frac{2220849114262768440818236976230}{4213870604165472439381617710210289628039189322595147550511} a^{18} + \frac{40740989183237720859284110212732834766134240638776134839}{4213870604165472439381617710210289628039189322595147550511} a^{17} + \frac{55033885631773944446901904068680139558466233128853705324}{4213870604165472439381617710210289628039189322595147550511} a^{16} + \frac{41683558671694636591467166489021536658388840720664404201}{4213870604165472439381617710210289628039189322595147550511} a^{15} - \frac{2071813839317324480732397256897129887958328317160469884844}{4213870604165472439381617710210289628039189322595147550511} a^{14} - \frac{372333747110509802282238737210389838170898703475765038892}{4213870604165472439381617710210289628039189322595147550511} a^{13} - \frac{2020926617187943952970904300106383563011428091236411563122}{4213870604165472439381617710210289628039189322595147550511} a^{12} - \frac{34333885920545091592011691814752271563945768325202772003}{113888394707174930794097775951629449406464576286355339203} a^{11} + \frac{1249526917300938162468729141930970160493242536328133669610}{4213870604165472439381617710210289628039189322595147550511} a^{10} + \frac{1652535960063729919781641999749167284907722029988866964901}{4213870604165472439381617710210289628039189322595147550511} a^{9} - \frac{1336460659461507905453368295867309541712067067551136421997}{4213870604165472439381617710210289628039189322595147550511} a^{8} - \frac{318902965026530756357769625250529865044594322161572388083}{4213870604165472439381617710210289628039189322595147550511} a^{7} + \frac{1841511770047357615619236266441951136790420403477050221534}{4213870604165472439381617710210289628039189322595147550511} a^{6} + \frac{10636037202013515517945512415968251084429301585614503573}{4213870604165472439381617710210289628039189322595147550511} a^{5} - \frac{425225786950895260435062066362884488157655128686573785}{4260738730197646551447540657442153314498674744787813499} a^{4} - \frac{897120362306142219160863827138051924425407484805278308721}{4213870604165472439381617710210289628039189322595147550511} a^{3} - \frac{1365102926841378250882003053084804434175803687956250475355}{4213870604165472439381617710210289628039189322595147550511} a^{2} + \frac{888136792971536001283144795925591435594137341684195403495}{4213870604165472439381617710210289628039189322595147550511} a - \frac{1641143383559869362325512880886547999611964478458614936542}{4213870604165472439381617710210289628039189322595147550511}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{10}\times C_{198710}$, which has order $1987100$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3338983.6210111137 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-85}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-5}, \sqrt{17})\), \(\Q(\zeta_{11})^+\), 10.0.685948419200000.1, 10.0.973948664640054400000.1, 10.10.304358957700017.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
5Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
17Data not computed