Properties

Label 20.0.94750049595...7093.1
Degree $20$
Signature $[0, 10]$
Discriminant $3^{18}\cdot 43\cdot 109\cdot 211\cdot 223^{4}$
Root discriminant $15.81$
Ramified primes $3, 43, 109, 211, 223$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T887

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -15, 54, -144, 336, -723, 1431, -2526, 3903, -5226, 6049, -6046, 5211, -3858, 2436, -1296, 570, -201, 54, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 54*x^18 - 201*x^17 + 570*x^16 - 1296*x^15 + 2436*x^14 - 3858*x^13 + 5211*x^12 - 6046*x^11 + 6049*x^10 - 5226*x^9 + 3903*x^8 - 2526*x^7 + 1431*x^6 - 723*x^5 + 336*x^4 - 144*x^3 + 54*x^2 - 15*x + 3)
 
gp: K = bnfinit(x^20 - 10*x^19 + 54*x^18 - 201*x^17 + 570*x^16 - 1296*x^15 + 2436*x^14 - 3858*x^13 + 5211*x^12 - 6046*x^11 + 6049*x^10 - 5226*x^9 + 3903*x^8 - 2526*x^7 + 1431*x^6 - 723*x^5 + 336*x^4 - 144*x^3 + 54*x^2 - 15*x + 3, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 54 x^{18} - 201 x^{17} + 570 x^{16} - 1296 x^{15} + 2436 x^{14} - 3858 x^{13} + 5211 x^{12} - 6046 x^{11} + 6049 x^{10} - 5226 x^{9} + 3903 x^{8} - 2526 x^{7} + 1431 x^{6} - 723 x^{5} + 336 x^{4} - 144 x^{3} + 54 x^{2} - 15 x + 3 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(947500495953542851857093=3^{18}\cdot 43\cdot 109\cdot 211\cdot 223^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 43, 109, 211, 223$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( a^{18} - 9 a^{17} + 45 a^{16} - 156 a^{15} + 412 a^{14} - 868 a^{13} + 1499 a^{12} - 2156 a^{11} + 2607 a^{10} - 2662 a^{9} + 2300 a^{8} - 1682 a^{7} + 1048 a^{6} - 565 a^{5} + 276 a^{4} - 126 a^{3} + 54 a^{2} - 18 a + 5 \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22364.6774993 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T887:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 245760
The 201 conjugacy class representatives for t20n887 are not computed
Character table for t20n887 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 5.3.18063.1, 10.0.978815907.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.10.9.2$x^{10} + 3$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
3.10.9.2$x^{10} + 3$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
43Data not computed
$109$$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
109.2.1.2$x^{2} + 654$$2$$1$$1$$C_2$$[\ ]_{2}$
109.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.6.0.1$x^{6} - x + 11$$1$$6$$0$$C_6$$[\ ]^{6}$
109.6.0.1$x^{6} - x + 11$$1$$6$$0$$C_6$$[\ ]^{6}$
211Data not computed
223Data not computed