Normalized defining polynomial
\( x^{20} - 9 x^{19} + 53 x^{18} - 206 x^{17} + 639 x^{16} - 1570 x^{15} + 2901 x^{14} - 3825 x^{13} + 1228 x^{12} + 11873 x^{11} - 37774 x^{10} + 95979 x^{9} - 105853 x^{8} + 121655 x^{7} + 217014 x^{6} - 494918 x^{5} + 1294797 x^{4} - 1276229 x^{3} + 1498784 x^{2} - 693246 x + 438703 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(940750669363917389085763203125=5^{7}\cdot 61^{6}\cdot 97^{2}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 97, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} - \frac{2}{13} a^{17} - \frac{1}{13} a^{16} - \frac{3}{13} a^{15} - \frac{5}{13} a^{14} - \frac{3}{13} a^{13} - \frac{1}{13} a^{12} + \frac{6}{13} a^{11} - \frac{3}{13} a^{10} + \frac{3}{13} a^{9} + \frac{2}{13} a^{8} - \frac{2}{13} a^{7} + \frac{3}{13} a^{6} - \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{1}{13} a^{3} + \frac{3}{13} a^{2} + \frac{1}{13} a + \frac{5}{13}$, $\frac{1}{611845026320389765609979220422372643273385695630625523899} a^{19} + \frac{16429493306099864052712931723624274398399482225956128106}{611845026320389765609979220422372643273385695630625523899} a^{18} - \frac{187145458559320416006823015384044033557107629552114855625}{611845026320389765609979220422372643273385695630625523899} a^{17} - \frac{210080983765817551173323068186427943428965328002582263528}{611845026320389765609979220422372643273385695630625523899} a^{16} + \frac{153784289220386213336670089117590199090123030514571078602}{611845026320389765609979220422372643273385695630625523899} a^{15} - \frac{115630056325420725249110005067255078824584462908036336903}{611845026320389765609979220422372643273385695630625523899} a^{14} - \frac{27167465256975870674163725945295278804272834092943146852}{611845026320389765609979220422372643273385695630625523899} a^{13} - \frac{105496225910986815456386659144865680822178188740231507776}{611845026320389765609979220422372643273385695630625523899} a^{12} - \frac{81919585255304096627340684678337086170577533575466358715}{611845026320389765609979220422372643273385695630625523899} a^{11} + \frac{118764181234706297614605326007956896903027338833146156368}{611845026320389765609979220422372643273385695630625523899} a^{10} + \frac{3468780267927304961483539315294763159916093978036318726}{47065002024645366585383016955567126405645053510048117223} a^{9} - \frac{166249272681093762186198269364638016103472401520815881653}{611845026320389765609979220422372643273385695630625523899} a^{8} + \frac{7433842840897078182994561717731602301423556080799736678}{47065002024645366585383016955567126405645053510048117223} a^{7} - \frac{263589304211002306308888489152693655345110673187065540357}{611845026320389765609979220422372643273385695630625523899} a^{6} - \frac{259251089883854446562253689271910673783426787008959397786}{611845026320389765609979220422372643273385695630625523899} a^{5} - \frac{119559443616770972077333392703312676126624775130030852514}{611845026320389765609979220422372643273385695630625523899} a^{4} - \frac{235894309872858289972815267442765881654298249424970266814}{611845026320389765609979220422372643273385695630625523899} a^{3} + \frac{199832984380506004940683177008655905948025838589107934656}{611845026320389765609979220422372643273385695630625523899} a^{2} + \frac{2256825010883431054040458557336291509689946645421378397}{47065002024645366585383016955567126405645053510048117223} a - \frac{203834337944989197551247745475757750124779474732785746088}{611845026320389765609979220422372643273385695630625523899}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1302470.90223 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.24217.1, 10.2.2932315445.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.12.0.1 | $x^{12} - x + 68$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 397 | Data not computed | ||||||