Normalized defining polynomial
\( x^{20} - 5 x^{19} + 25 x^{18} - 35 x^{17} + 270 x^{16} - 919 x^{15} + 4850 x^{14} + 24400 x^{13} + 158005 x^{12} + 323200 x^{11} + 240476 x^{10} - 2451535 x^{9} - 9806600 x^{8} - 22103305 x^{7} - 18499285 x^{6} + 36486691 x^{5} + 184536915 x^{4} + 378693200 x^{3} + 498508960 x^{2} + 402067640 x + 168988496 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9387703148876316845417022705078125=5^{31}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{76} a^{18} + \frac{7}{76} a^{16} - \frac{2}{19} a^{14} + \frac{5}{38} a^{13} - \frac{5}{38} a^{12} + \frac{1}{38} a^{11} + \frac{1}{76} a^{10} - \frac{1}{38} a^{9} - \frac{4}{19} a^{8} + \frac{5}{38} a^{7} - \frac{5}{19} a^{6} + \frac{2}{19} a^{5} - \frac{29}{76} a^{4} + \frac{9}{38} a^{3} - \frac{11}{76} a^{2} - \frac{9}{19} a + \frac{3}{19}$, $\frac{1}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{19} + \frac{8115113969455534951781988892180760684934801953018434045993632395187}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{18} + \frac{10801847081374795790237250702930492710858851355221992110742936730837}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{17} - \frac{213636318760062715601966761815787615425618587954274690961471165165583}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{16} + \frac{16555355102740202305739775448538663745929788562134832612804311763238}{230332238414849941032068795213804749870639465298829823185816133031221} a^{15} - \frac{139094398132643264585294628379724708778019298981084841019191278192151}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{14} - \frac{842628770417491290937425382635414004019299651059897833214501227729}{921328953659399764128275180855218999482557861195319292743264532124884} a^{13} - \frac{27403859127557514920850213379311214151516007359229845308062055436253}{460664476829699882064137590427609499741278930597659646371632266062442} a^{12} - \frac{374222255245502479311970971681218030938369435371893193690796874412505}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{11} + \frac{86898060059690868835614601680867263551261287989197097550330579576895}{460664476829699882064137590427609499741278930597659646371632266062442} a^{10} + \frac{95379842741702110535612727637434374929212576455999773051938745221307}{921328953659399764128275180855218999482557861195319292743264532124884} a^{9} - \frac{56349862803977788738152759856865306881542020713355863591649296803203}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{8} + \frac{61176008907793018586714395081294815298074785638115642751373478867173}{921328953659399764128275180855218999482557861195319292743264532124884} a^{7} - \frac{790226489237124404951396184854556210092946927552161025090699162080317}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{6} - \frac{146977703656593977666186096510158532961174982127552942757386907382993}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{5} + \frac{47885022183555814657706271368011376361969920673020760998448396223193}{96981995122042080434555282195286210471848195915296767657185740223672} a^{4} - \frac{507548804278599381085360496804623831946394441028109630702549690262723}{1842657907318799528256550361710437998965115722390638585486529064249768} a^{3} + \frac{101374436050883109287836543775782738537449925569809180067712362900268}{230332238414849941032068795213804749870639465298829823185816133031221} a^{2} - \frac{31576328811327137293174387292184960353903475236180166563393383693}{230332238414849941032068795213804749870639465298829823185816133031221} a + \frac{93819010693431326653789212025193937154883142497110761357023547670024}{230332238414849941032068795213804749870639465298829823185816133031221}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 265705502.8157561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.36125.1, 5.1.78125.1, 10.2.30517578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |