Properties

Label 20.0.93695850529...0576.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{36}\cdot 7^{10}\cdot 13^{6}$
Root discriminant $19.89$
Ramified primes $2, 7, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T199

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -32, 16, 296, 140, -1352, 1546, -680, 2, 384, -421, 96, 197, -272, 242, -172, 96, -40, 13, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 13*x^18 - 40*x^17 + 96*x^16 - 172*x^15 + 242*x^14 - 272*x^13 + 197*x^12 + 96*x^11 - 421*x^10 + 384*x^9 + 2*x^8 - 680*x^7 + 1546*x^6 - 1352*x^5 + 140*x^4 + 296*x^3 + 16*x^2 - 32*x + 8)
 
gp: K = bnfinit(x^20 - 4*x^19 + 13*x^18 - 40*x^17 + 96*x^16 - 172*x^15 + 242*x^14 - 272*x^13 + 197*x^12 + 96*x^11 - 421*x^10 + 384*x^9 + 2*x^8 - 680*x^7 + 1546*x^6 - 1352*x^5 + 140*x^4 + 296*x^3 + 16*x^2 - 32*x + 8, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 13 x^{18} - 40 x^{17} + 96 x^{16} - 172 x^{15} + 242 x^{14} - 272 x^{13} + 197 x^{12} + 96 x^{11} - 421 x^{10} + 384 x^{9} + 2 x^{8} - 680 x^{7} + 1546 x^{6} - 1352 x^{5} + 140 x^{4} + 296 x^{3} + 16 x^{2} - 32 x + 8 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(93695850529185649263640576=2^{36}\cdot 7^{10}\cdot 13^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{3}{8} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{357611050727290529012144} a^{19} - \frac{21150161745715943545551}{357611050727290529012144} a^{18} + \frac{5289407416008902760169}{178805525363645264506072} a^{17} + \frac{1397142091358210236763}{178805525363645264506072} a^{16} + \frac{9082673793549974237205}{178805525363645264506072} a^{15} + \frac{21254947081827542066467}{178805525363645264506072} a^{14} - \frac{2075693643804334702837}{22350690670455658063259} a^{13} - \frac{929451061635383685101}{44701381340911316126518} a^{12} - \frac{5441655702843791637541}{51087292961041504144592} a^{11} + \frac{33641956233076091930993}{357611050727290529012144} a^{10} + \frac{4794236628493705495320}{22350690670455658063259} a^{9} - \frac{7886149320798374629347}{89402762681822632253036} a^{8} - \frac{24832630210532636195007}{178805525363645264506072} a^{7} + \frac{16959608812158811212229}{178805525363645264506072} a^{6} + \frac{36176139235126374426861}{89402762681822632253036} a^{5} + \frac{12052068061430116344277}{89402762681822632253036} a^{4} + \frac{10143132555345593808971}{22350690670455658063259} a^{3} - \frac{12490353732613175636155}{44701381340911316126518} a^{2} + \frac{137247648481795118503}{6385911620130188018074} a - \frac{11532053129374213814557}{44701381340911316126518}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 601059.416066 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T199:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1440
The 22 conjugacy class representatives for t20n199
Character table for t20n199 is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), 10.2.197544116224.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 30 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.7$x^{4} + 4 x^{2} + 4 x + 2$$4$$1$$8$$S_4$$[8/3, 8/3]_{3}^{2}$
2.4.8.7$x^{4} + 4 x^{2} + 4 x + 2$$4$$1$$8$$S_4$$[8/3, 8/3]_{3}^{2}$
2.6.10.6$x^{6} + 2 x^{5} + 4 x^{3} + 6$$6$$1$$10$$S_4\times C_2$$[2, 8/3, 8/3]_{3}^{2}$
2.6.10.6$x^{6} + 2 x^{5} + 4 x^{3} + 6$$6$$1$$10$$S_4\times C_2$$[2, 8/3, 8/3]_{3}^{2}$
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.6.3.2$x^{6} - 49 x^{2} + 686$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
7.6.3.2$x^{6} - 49 x^{2} + 686$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
7.6.3.2$x^{6} - 49 x^{2} + 686$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
13.12.6.1$x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$