Normalized defining polynomial
\( x^{20} - 8 x^{19} + 72 x^{18} - 371 x^{17} + 1752 x^{16} - 6438 x^{15} + 20690 x^{14} - 58315 x^{13} + 148935 x^{12} - 348786 x^{11} + 761894 x^{10} - 1551579 x^{9} + 2809400 x^{8} - 3955694 x^{7} + 4759948 x^{6} - 6634959 x^{5} + 12143657 x^{4} - 20961620 x^{3} + 33984289 x^{2} - 30098420 x + 35738491 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(935079133905458759334789865752701=29^{7}\cdot 61^{4}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{19} + \frac{2143537932241726666128360276852663775410516294072053869749020140916652408584}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{18} + \frac{67947452565235136898718006152148144099927524495420135275885142644887889315}{279602856760639825038336037780522363905740385257597213455491158562979852871} a^{17} + \frac{2689885915798552221923898218346453063510616372634858033955973067463614389240}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{16} + \frac{2462008554165522921120082205500301943181469157451823051556339041816721348197}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{15} + \frac{2378972927473381672264057742134304815300666106506071412568995195701546442931}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{14} - \frac{2697239428401652504748441969321557060845606711896070902452437749074393716467}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{13} - \frac{2484286304988095913683802782366534282693960307333252730787048966101665340787}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{12} - \frac{3151380810446090905739741872599726582130198249104807421626818271663635024682}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{11} + \frac{1793478942499627962511763577952236077266491774525959683597790569294270778693}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{10} - \frac{651457979549543964041765180247475166427202300223092961153791061278676591880}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{9} - \frac{1965764136751506044562874433903279016371594196642129616591140404099659282801}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{8} + \frac{3063885233180091978517180807199953825671191243960288051342760161783954184893}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{7} - \frac{3018619533970354913304048685172906014307883884377327286998566795587661222937}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{6} - \frac{89992281566246795890037698652015046616024803666052229755069598886586019971}{279602856760639825038336037780522363905740385257597213455491158562979852871} a^{5} - \frac{249436003924493619309459564481465074735829811436529335203295623284031660416}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{4} - \frac{3033756348480360351159970936999257680828634395363752442777422501655140841505}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{3} - \frac{436694612709454129385574390290311596955741136706634333416916509450076280916}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a^{2} + \frac{2424153456988816486181991198549021995726191218471261590550163347726984488761}{6430865705494715975881728868952014369832028860924735909476296646948536616033} a + \frac{2829779288593038190301376600368118455640110681938843346968291561609209896757}{6430865705494715975881728868952014369832028860924735909476296646948536616033}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50598051.611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.17007429581.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.8.4.2 | $x^{8} - 24389 x^{2} + 13438339$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 397 | Data not computed | ||||||