Normalized defining polynomial
\( x^{20} - x^{19} + 6 x^{18} - 11 x^{17} + 41 x^{16} - 96 x^{15} + 301 x^{14} - 781 x^{13} + 2286 x^{12} - 6191 x^{11} + 17621 x^{10} + 30955 x^{9} + 57150 x^{8} + 97625 x^{7} + 188125 x^{6} + 300000 x^{5} + 640625 x^{4} + 859375 x^{3} + 2343750 x^{2} + 1953125 x + 9765625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92738759037689478010716606945681=3^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(146,·)$, $\chi_{231}(83,·)$, $\chi_{231}(20,·)$, $\chi_{231}(85,·)$, $\chi_{231}(230,·)$, $\chi_{231}(167,·)$, $\chi_{231}(104,·)$, $\chi_{231}(41,·)$, $\chi_{231}(106,·)$, $\chi_{231}(43,·)$, $\chi_{231}(211,·)$, $\chi_{231}(62,·)$, $\chi_{231}(169,·)$, $\chi_{231}(148,·)$, $\chi_{231}(188,·)$, $\chi_{231}(125,·)$, $\chi_{231}(190,·)$, $\chi_{231}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{88105} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{6191}{17621}$, $\frac{1}{440525} a^{12} - \frac{1}{440525} a^{11} + \frac{11}{25} a^{10} + \frac{9}{25} a^{9} - \frac{4}{25} a^{8} - \frac{1}{25} a^{7} + \frac{6}{25} a^{6} - \frac{11}{25} a^{5} - \frac{9}{25} a^{4} + \frac{4}{25} a^{3} + \frac{1}{25} a^{2} + \frac{6191}{88105} a + \frac{2286}{17621}$, $\frac{1}{2202625} a^{13} - \frac{1}{2202625} a^{12} + \frac{6}{2202625} a^{11} + \frac{34}{125} a^{10} + \frac{21}{125} a^{9} + \frac{24}{125} a^{8} - \frac{44}{125} a^{7} + \frac{39}{125} a^{6} - \frac{9}{125} a^{5} - \frac{46}{125} a^{4} + \frac{1}{125} a^{3} + \frac{6191}{440525} a^{2} + \frac{2286}{88105} a + \frac{781}{17621}$, $\frac{1}{11013125} a^{14} - \frac{1}{11013125} a^{13} + \frac{6}{11013125} a^{12} - \frac{11}{11013125} a^{11} + \frac{21}{625} a^{10} + \frac{149}{625} a^{9} - \frac{44}{625} a^{8} + \frac{164}{625} a^{7} + \frac{241}{625} a^{6} - \frac{46}{625} a^{5} + \frac{1}{625} a^{4} + \frac{6191}{2202625} a^{3} + \frac{2286}{440525} a^{2} + \frac{781}{88105} a + \frac{301}{17621}$, $\frac{1}{55065625} a^{15} - \frac{1}{55065625} a^{14} + \frac{6}{55065625} a^{13} - \frac{11}{55065625} a^{12} + \frac{41}{55065625} a^{11} - \frac{476}{3125} a^{10} + \frac{581}{3125} a^{9} + \frac{164}{3125} a^{8} - \frac{384}{3125} a^{7} + \frac{1204}{3125} a^{6} + \frac{1}{3125} a^{5} + \frac{6191}{11013125} a^{4} + \frac{2286}{2202625} a^{3} + \frac{781}{440525} a^{2} + \frac{301}{88105} a + \frac{96}{17621}$, $\frac{1}{275328125} a^{16} - \frac{1}{275328125} a^{15} + \frac{6}{275328125} a^{14} - \frac{11}{275328125} a^{13} + \frac{41}{275328125} a^{12} - \frac{96}{275328125} a^{11} - \frac{2544}{15625} a^{10} + \frac{164}{15625} a^{9} + \frac{2741}{15625} a^{8} - \frac{1921}{15625} a^{7} + \frac{1}{15625} a^{6} + \frac{6191}{55065625} a^{5} + \frac{2286}{11013125} a^{4} + \frac{781}{2202625} a^{3} + \frac{301}{440525} a^{2} + \frac{96}{88105} a + \frac{41}{17621}$, $\frac{1}{1376640625} a^{17} - \frac{1}{1376640625} a^{16} + \frac{6}{1376640625} a^{15} - \frac{11}{1376640625} a^{14} + \frac{41}{1376640625} a^{13} - \frac{96}{1376640625} a^{12} + \frac{301}{1376640625} a^{11} + \frac{164}{78125} a^{10} - \frac{12884}{78125} a^{9} + \frac{13704}{78125} a^{8} + \frac{1}{78125} a^{7} + \frac{6191}{275328125} a^{6} + \frac{2286}{55065625} a^{5} + \frac{781}{11013125} a^{4} + \frac{301}{2202625} a^{3} + \frac{96}{440525} a^{2} + \frac{41}{88105} a + \frac{11}{17621}$, $\frac{1}{6883203125} a^{18} - \frac{1}{6883203125} a^{17} + \frac{6}{6883203125} a^{16} - \frac{11}{6883203125} a^{15} + \frac{41}{6883203125} a^{14} - \frac{96}{6883203125} a^{13} + \frac{301}{6883203125} a^{12} - \frac{781}{6883203125} a^{11} + \frac{65241}{390625} a^{10} - \frac{64421}{390625} a^{9} + \frac{1}{390625} a^{8} + \frac{6191}{1376640625} a^{7} + \frac{2286}{275328125} a^{6} + \frac{781}{55065625} a^{5} + \frac{301}{11013125} a^{4} + \frac{96}{2202625} a^{3} + \frac{41}{440525} a^{2} + \frac{11}{88105} a + \frac{6}{17621}$, $\frac{1}{34416015625} a^{19} - \frac{1}{34416015625} a^{18} + \frac{6}{34416015625} a^{17} - \frac{11}{34416015625} a^{16} + \frac{41}{34416015625} a^{15} - \frac{96}{34416015625} a^{14} + \frac{301}{34416015625} a^{13} - \frac{781}{34416015625} a^{12} + \frac{2286}{34416015625} a^{11} + \frac{326204}{1953125} a^{10} + \frac{1}{1953125} a^{9} + \frac{6191}{6883203125} a^{8} + \frac{2286}{1376640625} a^{7} + \frac{781}{275328125} a^{6} + \frac{301}{55065625} a^{5} + \frac{96}{11013125} a^{4} + \frac{41}{2202625} a^{3} + \frac{11}{440525} a^{2} + \frac{6}{88105} a + \frac{1}{17621}$
Class group and class number
$C_{66}$, which has order $66$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{440525} a^{13} - \frac{136681}{440525} a^{2} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5868059.79956 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{21})\), \(\Q(\zeta_{11})^+\), 10.10.875463320250981.1, 10.0.9630096522760791.1, \(\Q(\zeta_{11})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||