Normalized defining polynomial
\( x^{20} - 8 x^{19} + 27 x^{18} - 52 x^{17} + 132 x^{16} - 452 x^{15} + 1108 x^{14} - 1974 x^{13} + 4254 x^{12} - 9042 x^{11} + 17084 x^{10} - 27764 x^{9} + 50255 x^{8} - 71930 x^{7} + 123807 x^{6} - 139074 x^{5} + 238062 x^{4} - 158880 x^{3} + 351000 x^{2} - 96318 x + 278653 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92738759037689478010716606945681=3^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(197,·)$, $\chi_{231}(134,·)$, $\chi_{231}(8,·)$, $\chi_{231}(202,·)$, $\chi_{231}(62,·)$, $\chi_{231}(83,·)$, $\chi_{231}(148,·)$, $\chi_{231}(29,·)$, $\chi_{231}(223,·)$, $\chi_{231}(97,·)$, $\chi_{231}(34,·)$, $\chi_{231}(230,·)$, $\chi_{231}(167,·)$, $\chi_{231}(41,·)$, $\chi_{231}(50,·)$, $\chi_{231}(181,·)$, $\chi_{231}(169,·)$, $\chi_{231}(190,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{67108807037207236545887877366240513556890506} a^{19} - \frac{11520241337880660379127872001684666069917615}{67108807037207236545887877366240513556890506} a^{18} - \frac{2218723088015768938527342499327391365388871}{33554403518603618272943938683120256778445253} a^{17} + \frac{10576462886271910849288732076479855525424147}{67108807037207236545887877366240513556890506} a^{16} - \frac{10668277309886523326026289338083169676065205}{67108807037207236545887877366240513556890506} a^{15} + \frac{2922813306093270109541476267802577842323830}{33554403518603618272943938683120256778445253} a^{14} + \frac{5334816130175132081645427359012129501138322}{33554403518603618272943938683120256778445253} a^{13} - \frac{7739187645107550898638533661809248501675950}{33554403518603618272943938683120256778445253} a^{12} - \frac{1106780996430215902802061761442784386340762}{33554403518603618272943938683120256778445253} a^{11} + \frac{5690467644836405312446472135498067257961463}{67108807037207236545887877366240513556890506} a^{10} + \frac{3747212802663590841079736133068552145162806}{33554403518603618272943938683120256778445253} a^{9} - \frac{173104125919454153435192706307075668960318}{500811992814979377208118487807765026543959} a^{8} + \frac{25130227771703158059035993314978066098409211}{67108807037207236545887877366240513556890506} a^{7} - \frac{110884594556252844068625202273428326422193}{500811992814979377208118487807765026543959} a^{6} - \frac{1097522100103608201114003767457389573380521}{33554403518603618272943938683120256778445253} a^{5} + \frac{3714826438560749532468253528585422751058099}{33554403518603618272943938683120256778445253} a^{4} - \frac{7601822259533721462934526471822101575325977}{67108807037207236545887877366240513556890506} a^{3} - \frac{14425614338460686474240251398350068670425330}{33554403518603618272943938683120256778445253} a^{2} - \frac{6944947810120940960406617645800123743864999}{33554403518603618272943938683120256778445253} a - \frac{7787813137125807011922320483848723743265}{500811992814979377208118487807765026543959}$
Class group and class number
$C_{330}$, which has order $330$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{-7}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\), 10.0.3602729712967.1, 10.0.9630096522760791.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |