Normalized defining polynomial
\( x^{20} - x^{19} + 22 x^{18} - 21 x^{17} + 307 x^{16} - 286 x^{15} + 2619 x^{14} - 2333 x^{13} + 16258 x^{12} - 13925 x^{11} + 67715 x^{10} - 53723 x^{9} + 202840 x^{8} - 146169 x^{7} + 361505 x^{6} - 203544 x^{5} + 399607 x^{4} - 237335 x^{3} + 147488 x^{2} - 28073 x + 4489 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92738759037689478010716606945681=3^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(71,·)$, $\chi_{231}(139,·)$, $\chi_{231}(76,·)$, $\chi_{231}(13,·)$, $\chi_{231}(83,·)$, $\chi_{231}(148,·)$, $\chi_{231}(218,·)$, $\chi_{231}(155,·)$, $\chi_{231}(92,·)$, $\chi_{231}(160,·)$, $\chi_{231}(230,·)$, $\chi_{231}(167,·)$, $\chi_{231}(41,·)$, $\chi_{231}(113,·)$, $\chi_{231}(62,·)$, $\chi_{231}(118,·)$, $\chi_{231}(169,·)$, $\chi_{231}(190,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} + \frac{5}{23} a^{11} - \frac{9}{23} a^{10} - \frac{6}{23} a^{9} - \frac{10}{23} a^{8} - \frac{5}{23} a^{7} + \frac{8}{23} a^{6} - \frac{9}{23} a^{5} + \frac{9}{23} a^{4} - \frac{1}{23} a^{3} - \frac{4}{23} a^{2} + \frac{10}{23} a + \frac{3}{23}$, $\frac{1}{23} a^{13} - \frac{11}{23} a^{11} - \frac{7}{23} a^{10} - \frac{3}{23} a^{9} - \frac{1}{23} a^{8} + \frac{10}{23} a^{7} - \frac{3}{23} a^{6} + \frac{8}{23} a^{5} + \frac{1}{23} a^{3} + \frac{7}{23} a^{2} - \frac{1}{23} a + \frac{8}{23}$, $\frac{1}{23} a^{14} + \frac{2}{23} a^{11} - \frac{10}{23} a^{10} + \frac{2}{23} a^{9} - \frac{8}{23} a^{8} + \frac{11}{23} a^{7} + \frac{4}{23} a^{6} - \frac{7}{23} a^{5} + \frac{8}{23} a^{4} - \frac{4}{23} a^{3} + \frac{1}{23} a^{2} + \frac{3}{23} a + \frac{10}{23}$, $\frac{1}{23} a^{15} + \frac{3}{23} a^{11} - \frac{3}{23} a^{10} + \frac{4}{23} a^{9} + \frac{8}{23} a^{8} - \frac{9}{23} a^{7} + \frac{3}{23} a^{5} + \frac{1}{23} a^{4} + \frac{3}{23} a^{3} + \frac{11}{23} a^{2} - \frac{10}{23} a - \frac{6}{23}$, $\frac{1}{23} a^{16} + \frac{5}{23} a^{11} + \frac{8}{23} a^{10} + \frac{3}{23} a^{9} - \frac{2}{23} a^{8} - \frac{8}{23} a^{7} + \frac{2}{23} a^{6} + \frac{5}{23} a^{5} - \frac{1}{23} a^{4} - \frac{9}{23} a^{3} + \frac{2}{23} a^{2} + \frac{10}{23} a - \frac{9}{23}$, $\frac{1}{23} a^{17} + \frac{6}{23} a^{11} + \frac{2}{23} a^{10} + \frac{5}{23} a^{9} - \frac{4}{23} a^{8} + \frac{4}{23} a^{7} + \frac{11}{23} a^{6} - \frac{2}{23} a^{5} - \frac{8}{23} a^{4} + \frac{7}{23} a^{3} + \frac{7}{23} a^{2} + \frac{10}{23} a + \frac{8}{23}$, $\frac{1}{1541} a^{18} + \frac{29}{1541} a^{17} + \frac{21}{1541} a^{16} + \frac{6}{1541} a^{15} + \frac{18}{1541} a^{14} - \frac{14}{1541} a^{13} - \frac{12}{1541} a^{12} + \frac{54}{1541} a^{11} + \frac{592}{1541} a^{10} + \frac{24}{67} a^{9} + \frac{726}{1541} a^{8} - \frac{453}{1541} a^{7} + \frac{444}{1541} a^{6} + \frac{280}{1541} a^{5} - \frac{672}{1541} a^{4} - \frac{259}{1541} a^{3} - \frac{515}{1541} a^{2} - \frac{262}{1541} a + \frac{1}{23}$, $\frac{1}{87070153861328478955417633542374969071} a^{19} + \frac{10259237727482110124465250589743969}{87070153861328478955417633542374969071} a^{18} - \frac{45151679603784639398970053088034302}{3785658863536020824148592762711955177} a^{17} + \frac{83638254171126767414982178031595534}{87070153861328478955417633542374969071} a^{16} - \frac{17006491509087408963966206700108331}{3785658863536020824148592762711955177} a^{15} + \frac{1007730697696585305777760056430250668}{87070153861328478955417633542374969071} a^{14} - \frac{68128446460249410542750087513016186}{87070153861328478955417633542374969071} a^{13} - \frac{960693771952475354236888799277825694}{87070153861328478955417633542374969071} a^{12} + \frac{10721384145867809556303920199065437998}{87070153861328478955417633542374969071} a^{11} + \frac{13701187748502660925703234201529421678}{87070153861328478955417633542374969071} a^{10} + \frac{16986730692542573174597604576919745482}{87070153861328478955417633542374969071} a^{9} + \frac{897635929516458700636450912194234346}{3785658863536020824148592762711955177} a^{8} + \frac{27152221983666109358969913582512867894}{87070153861328478955417633542374969071} a^{7} + \frac{24786555008262689670884921039398963732}{87070153861328478955417633542374969071} a^{6} + \frac{13165439731853115123514548354249051916}{87070153861328478955417633542374969071} a^{5} + \frac{17854580698979691458255167977925632001}{87070153861328478955417633542374969071} a^{4} - \frac{7733174635439686911454765370825542616}{87070153861328478955417633542374969071} a^{3} - \frac{22132313031218817132204385274398391507}{87070153861328478955417633542374969071} a^{2} - \frac{1985796216255954286751126427263376996}{87070153861328478955417633542374969071} a - \frac{126913091203078961698273565207433834}{1299554535243708641125636321527984613}$
Class group and class number
$C_{66}$, which has order $66$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{146502643753380322695060734927274}{3785658863536020824148592762711955177} a^{19} + \frac{133951941684383513223963556238640}{3785658863536020824148592762711955177} a^{18} - \frac{3234124095413111427168297445087474}{3785658863536020824148592762711955177} a^{17} + \frac{2822284336483241836995089013923606}{3785658863536020824148592762711955177} a^{16} - \frac{45213197011202564070835838839430508}{3785658863536020824148592762711955177} a^{15} + \frac{38467301227840170446024993466208526}{3785658863536020824148592762711955177} a^{14} - \frac{386947710222035953251306267513258946}{3785658863536020824148592762711955177} a^{13} + \frac{314428810631822861789079513921677620}{3785658863536020824148592762711955177} a^{12} - \frac{2408901470370388096390985965437547125}{3785658863536020824148592762711955177} a^{11} + \frac{1877123282674590923990021017670046654}{3785658863536020824148592762711955177} a^{10} - \frac{10084454820466429151532851151374502894}{3785658863536020824148592762711955177} a^{9} + \frac{7249657667885609098786555915271123568}{3785658863536020824148592762711955177} a^{8} - \frac{30370924162614788659699236119553309982}{3785658863536020824148592762711955177} a^{7} + \frac{19603057084266659388839531430167129194}{3785658863536020824148592762711955177} a^{6} - \frac{54864135446055304788368278136737361784}{3785658863536020824148592762711955177} a^{5} + \frac{26929939487259024573031322556249146630}{3785658863536020824148592762711955177} a^{4} - \frac{61595627150858414899398486874812707462}{3785658863536020824148592762711955177} a^{3} + \frac{29589483083216569005728129101156438720}{3785658863536020824148592762711955177} a^{2} - \frac{23865122466474675354892031992650708282}{3785658863536020824148592762711955177} a + \frac{68064334284838084185442333211952382}{56502371097552549614158100935999331} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1415140.16249 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{-3}, \sqrt{77})\), \(\Q(\zeta_{11})^+\), 10.10.39630026842637.1, 10.0.52089208083.1, 10.0.9630096522760791.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||