Normalized defining polynomial
\( x^{20} - 6 x^{19} + 21 x^{18} - 54 x^{17} + 162 x^{16} - 494 x^{15} + 1081 x^{14} - 1382 x^{13} + 1059 x^{12} - 1812 x^{11} + 5568 x^{10} - 7980 x^{9} + 1291 x^{8} + 3950 x^{7} + 6055 x^{6} - 2470 x^{5} - 890 x^{4} + 850 x^{3} + 1275 x^{2} + 150 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9256148959232000000000000000=2^{30}\cdot 5^{15}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{8} - \frac{1}{10} a^{6} - \frac{3}{10} a^{5} + \frac{3}{10} a^{4} + \frac{1}{4}$, $\frac{1}{20} a^{13} - \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{3}{10} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{20} a^{14} + \frac{1}{10} a^{9} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{40} a^{15} - \frac{1}{40} a^{12} + \frac{1}{20} a^{11} - \frac{1}{4} a^{9} - \frac{3}{20} a^{8} + \frac{1}{20} a^{6} - \frac{1}{20} a^{5} + \frac{1}{10} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{120} a^{16} - \frac{1}{120} a^{13} - \frac{1}{60} a^{12} + \frac{7}{30} a^{11} + \frac{1}{60} a^{10} + \frac{7}{60} a^{9} - \frac{1}{5} a^{8} + \frac{1}{60} a^{7} + \frac{1}{20} a^{6} + \frac{1}{15} a^{5} - \frac{19}{120} a^{4} + \frac{1}{12} a^{3} + \frac{1}{6} a^{2} - \frac{5}{24} a + \frac{1}{6}$, $\frac{1}{16680} a^{17} - \frac{13}{3336} a^{16} + \frac{1}{139} a^{15} + \frac{7}{3336} a^{14} - \frac{7}{5560} a^{13} + \frac{23}{4170} a^{12} - \frac{613}{2780} a^{11} + \frac{919}{4170} a^{10} - \frac{1613}{8340} a^{9} + \frac{1129}{8340} a^{8} - \frac{499}{4170} a^{7} + \frac{191}{1668} a^{6} + \frac{5881}{16680} a^{5} - \frac{1969}{5560} a^{4} + \frac{177}{556} a^{3} - \frac{181}{3336} a^{2} - \frac{1003}{3336} a + \frac{317}{1668}$, $\frac{1}{2129035200} a^{18} - \frac{95}{7096784} a^{17} - \frac{1427}{177419600} a^{16} - \frac{5631929}{1064517600} a^{15} - \frac{19671283}{1064517600} a^{14} - \frac{259709}{53225880} a^{13} + \frac{40560791}{2129035200} a^{12} + \frac{33506833}{266129400} a^{11} + \frac{42610329}{177419600} a^{10} - \frac{8292541}{532258800} a^{9} - \frac{33296983}{177419600} a^{8} - \frac{848611}{133064700} a^{7} - \frac{8019673}{85161408} a^{6} - \frac{8416493}{21290352} a^{5} - \frac{6406061}{26612940} a^{4} + \frac{58266167}{212903520} a^{3} - \frac{17753891}{42580704} a^{2} + \frac{204229}{1774196} a - \frac{9150197}{28387136}$, $\frac{1}{32357110740356342400} a^{19} + \frac{278321153}{32357110740356342400} a^{18} - \frac{3863830895897}{168526618439355950} a^{17} + \frac{6192550900934657}{3235711074035634240} a^{16} + \frac{3637371957235913}{808927768508908560} a^{15} + \frac{1966599323584027}{5392851790059390400} a^{14} - \frac{125745641455211969}{32357110740356342400} a^{13} - \frac{87268714993285951}{10785703580118780800} a^{12} - \frac{223861650188034511}{1617855537017817120} a^{11} - \frac{29553912467296433}{161785553701781712} a^{10} + \frac{729116592865087559}{4044638842544542800} a^{9} - \frac{438307710881105941}{8089277685089085600} a^{8} - \frac{1728011920000988731}{10785703580118780800} a^{7} - \frac{70016308170559829}{6471422148071268480} a^{6} - \frac{634686174066119107}{1617855537017817120} a^{5} + \frac{524241032979983829}{1078570358011878080} a^{4} + \frac{51141786247664429}{134821294751484760} a^{3} + \frac{254825111246154485}{647142214807126848} a^{2} - \frac{194911892439509445}{431428143204751232} a - \frac{85350657992609233}{431428143204751232}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 905204.455446 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.392000.2, 5.1.392000.1 x5, 10.2.768320000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.392000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |