Normalized defining polynomial
\( x^{20} - 6 x^{19} + 17 x^{18} - 34 x^{17} + 72 x^{16} - 142 x^{15} + 230 x^{14} - 374 x^{13} + 667 x^{12} - 926 x^{11} + 1464 x^{10} - 4142 x^{9} + 10155 x^{8} - 17489 x^{7} + 24262 x^{6} - 26479 x^{5} + 20704 x^{4} - 10840 x^{3} + 3907 x^{2} - 1407 x + 441 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92463633619402804697265625=5^{10}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{2} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} + \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{1}{3} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{4}{9} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{261} a^{17} - \frac{10}{261} a^{16} - \frac{2}{87} a^{14} + \frac{2}{87} a^{13} + \frac{2}{261} a^{12} + \frac{1}{9} a^{11} - \frac{28}{261} a^{10} + \frac{14}{261} a^{9} + \frac{121}{261} a^{8} + \frac{25}{87} a^{7} + \frac{14}{29} a^{6} - \frac{20}{87} a^{5} - \frac{5}{261} a^{4} + \frac{10}{261} a^{3} - \frac{65}{261} a^{2} + \frac{26}{87} a + \frac{1}{29}$, $\frac{1}{22082949} a^{18} + \frac{8128}{7360983} a^{17} - \frac{304420}{7360983} a^{16} + \frac{1163300}{22082949} a^{15} - \frac{346384}{7360983} a^{14} + \frac{300385}{22082949} a^{13} + \frac{559217}{22082949} a^{12} - \frac{1452319}{22082949} a^{11} - \frac{10765}{1051569} a^{10} + \frac{592988}{7360983} a^{9} - \frac{187549}{432999} a^{8} - \frac{9783113}{22082949} a^{7} + \frac{2766413}{7360983} a^{6} + \frac{925433}{22082949} a^{5} + \frac{10462315}{22082949} a^{4} + \frac{1267372}{22082949} a^{3} - \frac{11854}{39933} a^{2} + \frac{3649087}{7360983} a + \frac{114530}{350523}$, $\frac{1}{45657458656668529943013} a^{19} - \frac{23195417643343}{45657458656668529943013} a^{18} - \frac{6050933711007376787}{15219152885556176647671} a^{17} - \frac{1944489702227716068589}{45657458656668529943013} a^{16} - \frac{777936617014386544583}{45657458656668529943013} a^{15} - \frac{1324173157488029812388}{45657458656668529943013} a^{14} - \frac{1904478989419317426671}{45657458656668529943013} a^{13} + \frac{120696819997983601102}{15219152885556176647671} a^{12} + \frac{1872918758942328451120}{45657458656668529943013} a^{11} - \frac{765344633949518229307}{5073050961852058882557} a^{10} + \frac{2223683714799178800095}{15219152885556176647671} a^{9} - \frac{15890199285860672837273}{45657458656668529943013} a^{8} + \frac{10944838650458319780977}{45657458656668529943013} a^{7} - \frac{13411006408559846620510}{45657458656668529943013} a^{6} - \frac{21476332304833541376412}{45657458656668529943013} a^{5} + \frac{3977642261898796570801}{15219152885556176647671} a^{4} - \frac{2236201348964008551668}{45657458656668529943013} a^{3} + \frac{10202945659093834493437}{45657458656668529943013} a^{2} + \frac{609903413998536700346}{15219152885556176647671} a + \frac{259454546615193572719}{724721565978865554651}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24221.8358828 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), \(\Q(\sqrt{-395}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-79})\), 5.1.6241.1 x5, 10.0.3077056399.1, 10.0.9615801246875.1 x5, 10.2.121719003125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $79$ | 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |