Normalized defining polynomial
\( x^{20} - 4 x^{19} + 11 x^{18} - 21 x^{17} + 35 x^{16} - 50 x^{15} + 65 x^{14} - 77 x^{13} + 79 x^{12} - 81 x^{11} + 87 x^{10} - 162 x^{9} + 316 x^{8} - 616 x^{7} + 1040 x^{6} - 1600 x^{5} + 2240 x^{4} - 2688 x^{3} + 2816 x^{2} - 2048 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(922507212791997403369454768641=19^{8}\cdot 293^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{5}{16} a^{10} - \frac{1}{8} a^{9} - \frac{3}{16} a^{8} + \frac{7}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} + \frac{7}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{5}{32} a^{11} + \frac{7}{16} a^{10} + \frac{13}{32} a^{9} - \frac{9}{32} a^{8} + \frac{15}{32} a^{7} + \frac{15}{32} a^{6} - \frac{9}{32} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{5}{64} a^{12} + \frac{7}{32} a^{11} + \frac{13}{64} a^{10} + \frac{23}{64} a^{9} - \frac{17}{64} a^{8} + \frac{15}{64} a^{7} + \frac{23}{64} a^{6} - \frac{1}{32} a^{5} + \frac{3}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{5}{128} a^{13} + \frac{7}{64} a^{12} + \frac{13}{128} a^{11} + \frac{23}{128} a^{10} + \frac{47}{128} a^{9} - \frac{49}{128} a^{8} + \frac{23}{128} a^{7} - \frac{1}{64} a^{6} + \frac{3}{16} a^{5} - \frac{7}{16} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{617216} a^{18} - \frac{293}{77152} a^{17} + \frac{2355}{617216} a^{16} - \frac{8953}{617216} a^{15} - \frac{15889}{617216} a^{14} - \frac{1807}{308608} a^{13} + \frac{64569}{617216} a^{12} + \frac{104679}{617216} a^{11} + \frac{67739}{617216} a^{10} + \frac{7075}{617216} a^{9} - \frac{252693}{617216} a^{8} - \frac{19687}{308608} a^{7} - \frac{3467}{154304} a^{6} - \frac{6629}{19288} a^{5} - \frac{5257}{38576} a^{4} + \frac{8615}{19288} a^{3} + \frac{2355}{4822} a^{2} - \frac{2277}{4822} a + \frac{2}{2411}$, $\frac{1}{267871744} a^{19} - \frac{13}{19133696} a^{18} + \frac{865687}{267871744} a^{17} - \frac{1996139}{267871744} a^{16} - \frac{1077607}{267871744} a^{15} + \frac{416177}{66967936} a^{14} + \frac{539383}{38267392} a^{13} + \frac{4141391}{38267392} a^{12} + \frac{1351731}{8641024} a^{11} - \frac{128867763}{267871744} a^{10} + \frac{89794101}{267871744} a^{9} - \frac{783187}{2160256} a^{8} + \frac{2552445}{9566848} a^{7} - \frac{1440217}{4783424} a^{6} + \frac{3271801}{8370992} a^{5} + \frac{2014477}{8370992} a^{4} + \frac{1626435}{4185496} a^{3} + \frac{209660}{523187} a^{2} + \frac{55481}{149482} a + \frac{151644}{523187}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3891860.51282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_5$ (as 20T36):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $C_2\times A_5$ |
| Character table for $C_2\times A_5$ |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 293 | Data not computed | ||||||