Normalized defining polynomial
\( x^{20} - 2 x^{19} + 114 x^{17} - 389 x^{16} - 9300 x^{15} - 27121 x^{14} - 54957 x^{13} + 1509397 x^{12} - 1325319 x^{11} + 21491823 x^{10} + 135093409 x^{9} + 803037260 x^{8} + 519847620 x^{7} + 1197335012 x^{6} - 25786596024 x^{5} + 987102681652 x^{4} - 1345126254829 x^{3} + 5543074970116 x^{2} - 34565255468696 x + 135033863407129 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9175330252180039242707571655982422013=7^{15}\cdot 11^{9}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{16} + \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{7}{16} a^{11} + \frac{3}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{7}{16} a^{7} + \frac{3}{8} a^{6} - \frac{7}{16} a^{5} + \frac{3}{8} a^{4} - \frac{7}{16} a^{3} - \frac{3}{8} a^{2} - \frac{3}{16} a - \frac{3}{16}$, $\frac{1}{3392} a^{18} - \frac{23}{848} a^{17} + \frac{3}{64} a^{16} + \frac{33}{424} a^{15} + \frac{177}{848} a^{14} + \frac{351}{848} a^{13} - \frac{1069}{3392} a^{12} - \frac{823}{3392} a^{11} + \frac{39}{212} a^{10} + \frac{51}{424} a^{9} + \frac{847}{3392} a^{8} - \frac{765}{3392} a^{7} - \frac{281}{3392} a^{6} - \frac{157}{3392} a^{5} - \frac{537}{3392} a^{4} - \frac{1017}{3392} a^{3} - \frac{177}{3392} a^{2} - \frac{353}{1696} a + \frac{1633}{3392}$, $\frac{1}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{19} - \frac{5099452358836476989711220234742545177132261263208092529014430572958729571319059528950316022704202731117377206947879111340739}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{18} + \frac{684886319521705526194851780357209233833213556224923197420979911195653888787612676939935110794213296445765537285699757719485363}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{17} - \frac{227590874106919509691322782484824902296127974262706829508548365503075241048656930095983238091258245954295979819329699641812993}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{16} - \frac{4266460222659965350082746540205564699565025955458664518292399446824911784962405934262141656903091814692180184416316718026240205}{13691366093274753971053751020455095620108987451868369304654483897483403001076828318551713538044491533349945578327772905726876352} a^{15} - \frac{248331294526846240012505425832503475053360362710429520975893910161906358996060560989438050174309443642686080573828333800648117}{1711420761659344246381718877556886952513623431483546163081810487185425375134603539818964192255561441668743197290971613215859544} a^{14} + \frac{10047029790610139797236379983884133033801261085583296723649009328741483139277573709425039970705248861399304883528007808727477871}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{13} + \frac{3978066086482988318257728623624001996452822868249507549972701187491667831768365973052036909439469071561130604492604543490047865}{13691366093274753971053751020455095620108987451868369304654483897483403001076828318551713538044491533349945578327772905726876352} a^{12} - \frac{5493260933165395256905754535016474881552035284106580357911415027750120796339857854274251268653813741433142141733336469033997247}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{11} - \frac{1299164306288006326908870804023292413984375858141143881852125689301155054052147988367887996737228184197109319835967485515531123}{6845683046637376985526875510227547810054493725934184652327241948741701500538414159275856769022245766674972789163886452863438176} a^{10} - \frac{22149611407426735493929194312510327626471981655687154961970798946911673661321827879298860636618480650101705514999108672417004665}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{9} - \frac{11724936906825529011182808841735301234453657180993818617431296587741665155266818225900531594967658503342059429748280881472990099}{27382732186549507942107502040910191240217974903736738609308967794966806002153656637103427076088983066699891156655545811453752704} a^{8} + \frac{11677810521845583679901036438568499636169790534616193893902406373186249649811106931989232751480019049334444508309710938367445601}{27382732186549507942107502040910191240217974903736738609308967794966806002153656637103427076088983066699891156655545811453752704} a^{7} + \frac{3290978951451666970351165540730812855958134624827499324338472894331062449799087088617130536026037885290044745609037376549264553}{27382732186549507942107502040910191240217974903736738609308967794966806002153656637103427076088983066699891156655545811453752704} a^{6} - \frac{6799349156835050899544139413679725883201734477784416359453859401057899384239155651944426347252290839559359253131560606016647759}{27382732186549507942107502040910191240217974903736738609308967794966806002153656637103427076088983066699891156655545811453752704} a^{5} + \frac{4412573551632965574216616704934329916255928273989162431265003874733263286173283469882054223152871328619115112573312106979028507}{27382732186549507942107502040910191240217974903736738609308967794966806002153656637103427076088983066699891156655545811453752704} a^{4} - \frac{6794335458056354049647977559025193099445238386275598186551727882157604875176138885948210974800327029811581596623269466773445913}{27382732186549507942107502040910191240217974903736738609308967794966806002153656637103427076088983066699891156655545811453752704} a^{3} - \frac{4502827013995224620961293753021040944417201914087689756747606510675538181329267946851286134625803696736155696724481041498250411}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a^{2} - \frac{12134097886539204884650953930019384361448143106442522537097252674127857885047713126136585312234900150385881516936408499357165889}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408} a + \frac{12316465959312776387715240952917987832856288470867682143967609040792232652786650403682526663794026752960455450114024646208430537}{54765464373099015884215004081820382480435949807473477218617935589933612004307313274206854152177966133399782313311091622907505408}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.3625853.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 31 | Data not computed | ||||||