Properties

Label 20.0.91521641489...0464.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{8}\cdot 3^{10}\cdot 8821^{4}$
Root discriminant $14.06$
Ramified primes $2, 3, 8821$
Class number $1$
Class group Trivial
Galois group 20T760

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 17, -42, 82, -133, 175, -189, 182, -167, 158, -145, 104, -48, 1, 19, -11, 0, 5, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 5*x^18 - 11*x^16 + 19*x^15 + x^14 - 48*x^13 + 104*x^12 - 145*x^11 + 158*x^10 - 167*x^9 + 182*x^8 - 189*x^7 + 175*x^6 - 133*x^5 + 82*x^4 - 42*x^3 + 17*x^2 - 5*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^19 + 5*x^18 - 11*x^16 + 19*x^15 + x^14 - 48*x^13 + 104*x^12 - 145*x^11 + 158*x^10 - 167*x^9 + 182*x^8 - 189*x^7 + 175*x^6 - 133*x^5 + 82*x^4 - 42*x^3 + 17*x^2 - 5*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 5 x^{18} - 11 x^{16} + 19 x^{15} + x^{14} - 48 x^{13} + 104 x^{12} - 145 x^{11} + 158 x^{10} - 167 x^{9} + 182 x^{8} - 189 x^{7} + 175 x^{6} - 133 x^{5} + 82 x^{4} - 42 x^{3} + 17 x^{2} - 5 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(91521641489003479390464=2^{8}\cdot 3^{10}\cdot 8821^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 8821$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{23352394} a^{19} + \frac{5800889}{23352394} a^{18} + \frac{141837}{898169} a^{17} + \frac{75456}{898169} a^{16} - \frac{1962986}{11676197} a^{15} - \frac{1473205}{23352394} a^{14} - \frac{1289094}{11676197} a^{13} - \frac{4430483}{11676197} a^{12} - \frac{375839}{11676197} a^{11} - \frac{4806164}{11676197} a^{10} + \frac{1231649}{23352394} a^{9} + \frac{10794287}{23352394} a^{8} - \frac{4943540}{11676197} a^{7} - \frac{2415867}{11676197} a^{6} - \frac{11325697}{23352394} a^{5} - \frac{9892031}{23352394} a^{4} - \frac{804043}{11676197} a^{3} + \frac{810203}{23352394} a^{2} - \frac{952572}{11676197} a - \frac{2178450}{11676197}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{330400}{898169} a^{19} - \frac{118472}{898169} a^{18} + \frac{3333558}{898169} a^{17} - \frac{3923973}{898169} a^{16} - \frac{808183}{898169} a^{15} + \frac{9391182}{898169} a^{14} - \frac{17109470}{898169} a^{13} - \frac{2218817}{898169} a^{12} + \frac{33136925}{898169} a^{11} - \frac{58219419}{898169} a^{10} + \frac{66656412}{898169} a^{9} - \frac{58405796}{898169} a^{8} + \frac{64051535}{898169} a^{7} - \frac{78807703}{898169} a^{6} + \frac{80157056}{898169} a^{5} - \frac{66836488}{898169} a^{4} + \frac{39261886}{898169} a^{3} - \frac{17847651}{898169} a^{2} + \frac{6575358}{898169} a - \frac{845032}{898169} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4222.32085816 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T760:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n760 are not computed
Character table for t20n760 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 10.0.18907839963.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.3$x^{8} + 2 x^{7} + 2 x^{6} + 16$$2$$4$$8$$C_2^3: C_4$$[2, 2, 2]^{4}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
3Data not computed
8821Data not computed