Normalized defining polynomial
\( x^{20} - 6 x^{19} + 69 x^{18} - 292 x^{17} + 1606 x^{16} - 5778 x^{15} + 19584 x^{14} - 70552 x^{13} + 179453 x^{12} - 528056 x^{11} + 1294936 x^{10} - 2773796 x^{9} + 6856148 x^{8} - 10134664 x^{7} + 26644588 x^{6} - 27420408 x^{5} + 71119940 x^{4} - 46490160 x^{3} + 131507456 x^{2} - 30312416 x + 102461764 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(909981640506746603991752188943663104=2^{38}\cdot 97^{2}\cdot 2657^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{463871702146047542243895814557633272886552173407278018860519667789206634508} a^{19} - \frac{5922219330277504319431053204807879994237345162499843076039177936617164353}{115967925536511885560973953639408318221638043351819504715129916947301658627} a^{18} - \frac{15041012101629999539507197095981767345567213136687947422601901103304583513}{231935851073023771121947907278816636443276086703639009430259833894603317254} a^{17} + \frac{57731645828381131187043638342029583625098968048121719328580951701816187267}{463871702146047542243895814557633272886552173407278018860519667789206634508} a^{16} - \frac{18842023462514141393925317923248549437036654384702593692769131647619392031}{463871702146047542243895814557633272886552173407278018860519667789206634508} a^{15} + \frac{67169564258658529432122671384413628682122263526561943343147964171817241315}{463871702146047542243895814557633272886552173407278018860519667789206634508} a^{14} - \frac{24137261647791367012041078507805612078643150280184523636403898866504368661}{115967925536511885560973953639408318221638043351819504715129916947301658627} a^{13} - \frac{20666245570847565778210580204236158009083340408642585695674911814058394727}{115967925536511885560973953639408318221638043351819504715129916947301658627} a^{12} - \frac{73214982018750053780906542353729426926837082969336015537042213332995627541}{463871702146047542243895814557633272886552173407278018860519667789206634508} a^{11} - \frac{18876757921825849426920324175123408211244216795936350354294062167638315698}{115967925536511885560973953639408318221638043351819504715129916947301658627} a^{10} + \frac{221103264373645584593175571920847646550966952099436811050889987099069297905}{463871702146047542243895814557633272886552173407278018860519667789206634508} a^{9} - \frac{77873285789417196360682028304766572107362633979615166243499460963100051215}{463871702146047542243895814557633272886552173407278018860519667789206634508} a^{8} + \frac{42170067244289577924730066581919904482934653039509587316125261888466990169}{115967925536511885560973953639408318221638043351819504715129916947301658627} a^{7} - \frac{29584581492571445721692280747431693881329187374018894018240562015461386}{200984273026883683814512917919251851337327631458959280268856008574179651} a^{6} + \frac{54363495461038230266000344139080860280683746734364141708685178099351012149}{231935851073023771121947907278816636443276086703639009430259833894603317254} a^{5} + \frac{13206270554908585168034382023699953749587629098561019699245894525581796111}{231935851073023771121947907278816636443276086703639009430259833894603317254} a^{4} - \frac{83008866912629297934034048404259068344808481406804178962528449735453038895}{231935851073023771121947907278816636443276086703639009430259833894603317254} a^{3} + \frac{44860669829172740590700821892588708877165757318010668831253686971374045441}{231935851073023771121947907278816636443276086703639009430259833894603317254} a^{2} + \frac{30591334773161125663229074105359209532648144748178739159206365934133992662}{115967925536511885560973953639408318221638043351819504715129916947301658627} a + \frac{18426697688504445930452253594505084850188830551712820756267035331545443916}{115967925536511885560973953639408318221638043351819504715129916947301658627}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3049153087.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.12.26.87 | $x^{12} + 4 x^{11} + 2 x^{10} + 2 x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| 97 | Data not computed | ||||||
| 2657 | Data not computed | ||||||