Normalized defining polynomial
\( x^{20} - 8 x^{19} + 25 x^{18} - 42 x^{17} + 340 x^{16} - 1764 x^{15} + 4746 x^{14} - 10092 x^{13} + 48113 x^{12} - 141048 x^{11} + 363197 x^{10} - 832912 x^{9} + 2776705 x^{8} - 4741860 x^{7} + 14902647 x^{6} - 22665265 x^{5} + 65617877 x^{4} - 44927537 x^{3} + 266085953 x^{2} - 19105806 x + 507348601 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(905651943727436308698404364703916015625=3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1155=3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1155}(1,·)$, $\chi_{1155}(1154,·)$, $\chi_{1155}(391,·)$, $\chi_{1155}(841,·)$, $\chi_{1155}(1079,·)$, $\chi_{1155}(524,·)$, $\chi_{1155}(706,·)$, $\chi_{1155}(526,·)$, $\chi_{1155}(344,·)$, $\chi_{1155}(601,·)$, $\chi_{1155}(734,·)$, $\chi_{1155}(421,·)$, $\chi_{1155}(554,·)$, $\chi_{1155}(811,·)$, $\chi_{1155}(76,·)$, $\chi_{1155}(449,·)$, $\chi_{1155}(629,·)$, $\chi_{1155}(631,·)$, $\chi_{1155}(314,·)$, $\chi_{1155}(764,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{23} a^{10} + \frac{2}{23} a^{9} + \frac{6}{23} a^{8} - \frac{1}{23} a^{7} - \frac{11}{23} a^{6} - \frac{2}{23} a^{5} + \frac{8}{23} a^{4} + \frac{8}{23} a^{3} - \frac{9}{23} a^{2} + \frac{5}{23} a - \frac{7}{23}$, $\frac{1}{23} a^{11} + \frac{2}{23} a^{9} + \frac{10}{23} a^{8} - \frac{9}{23} a^{7} - \frac{3}{23} a^{6} - \frac{11}{23} a^{5} - \frac{8}{23} a^{4} - \frac{2}{23} a^{3} + \frac{6}{23} a - \frac{9}{23}$, $\frac{1}{23} a^{12} + \frac{6}{23} a^{9} + \frac{2}{23} a^{8} - \frac{1}{23} a^{7} + \frac{11}{23} a^{6} - \frac{4}{23} a^{5} + \frac{5}{23} a^{4} + \frac{7}{23} a^{3} + \frac{1}{23} a^{2} + \frac{4}{23} a - \frac{9}{23}$, $\frac{1}{23} a^{13} - \frac{10}{23} a^{9} + \frac{9}{23} a^{8} - \frac{6}{23} a^{7} - \frac{7}{23} a^{6} - \frac{6}{23} a^{5} + \frac{5}{23} a^{4} - \frac{1}{23} a^{3} - \frac{11}{23} a^{2} + \frac{7}{23} a - \frac{4}{23}$, $\frac{1}{23} a^{14} + \frac{6}{23} a^{9} + \frac{8}{23} a^{8} + \frac{6}{23} a^{7} - \frac{1}{23} a^{6} + \frac{8}{23} a^{5} + \frac{10}{23} a^{4} + \frac{9}{23} a^{2} - \frac{1}{23}$, $\frac{1}{23} a^{15} - \frac{4}{23} a^{9} - \frac{7}{23} a^{8} + \frac{5}{23} a^{7} + \frac{5}{23} a^{6} - \frac{1}{23} a^{5} - \frac{2}{23} a^{4} + \frac{7}{23} a^{3} + \frac{8}{23} a^{2} - \frac{8}{23} a - \frac{4}{23}$, $\frac{1}{23} a^{16} + \frac{1}{23} a^{9} + \frac{6}{23} a^{8} + \frac{1}{23} a^{7} + \frac{1}{23} a^{6} - \frac{10}{23} a^{5} - \frac{7}{23} a^{4} - \frac{6}{23} a^{3} + \frac{2}{23} a^{2} - \frac{7}{23} a - \frac{5}{23}$, $\frac{1}{529} a^{17} + \frac{1}{529} a^{16} + \frac{2}{529} a^{15} - \frac{8}{529} a^{14} - \frac{1}{529} a^{13} + \frac{5}{529} a^{12} + \frac{4}{529} a^{10} + \frac{20}{529} a^{9} + \frac{247}{529} a^{8} - \frac{38}{529} a^{7} - \frac{146}{529} a^{6} - \frac{126}{529} a^{5} - \frac{191}{529} a^{4} - \frac{137}{529} a^{3} + \frac{66}{529} a^{2} - \frac{7}{23} a - \frac{67}{529}$, $\frac{1}{529} a^{18} + \frac{1}{529} a^{16} - \frac{10}{529} a^{15} + \frac{7}{529} a^{14} + \frac{6}{529} a^{13} - \frac{5}{529} a^{12} + \frac{4}{529} a^{11} - \frac{7}{529} a^{10} + \frac{181}{529} a^{9} + \frac{106}{529} a^{8} - \frac{85}{529} a^{7} - \frac{256}{529} a^{6} - \frac{19}{529} a^{5} - \frac{130}{529} a^{4} + \frac{19}{529} a^{3} - \frac{20}{529} a^{2} - \frac{21}{529} a + \frac{228}{529}$, $\frac{1}{1263097401808916872832294340198707312129998554925096450201} a^{19} + \frac{717453190373278711121788498607557150718562483087256477}{1263097401808916872832294340198707312129998554925096450201} a^{18} - \frac{817046637504387119316891205214416864582999008166887006}{1263097401808916872832294340198707312129998554925096450201} a^{17} + \frac{2923051926363797922013336019997244653998400483147298954}{1263097401808916872832294340198707312129998554925096450201} a^{16} - \frac{24028691565509157884588151452530628449293369604769429844}{1263097401808916872832294340198707312129998554925096450201} a^{15} - \frac{10432469728401571555603450681616582908247880080283012384}{1263097401808916872832294340198707312129998554925096450201} a^{14} - \frac{14292740238192959858719764233219943755571275671489899757}{1263097401808916872832294340198707312129998554925096450201} a^{13} + \frac{4023100752748720509053623299379477693282120995653975069}{1263097401808916872832294340198707312129998554925096450201} a^{12} - \frac{15022428235879329391489042466060205717203357058763862820}{1263097401808916872832294340198707312129998554925096450201} a^{11} + \frac{2564758957623361481900701837132896816973439231289675963}{1263097401808916872832294340198707312129998554925096450201} a^{10} + \frac{192953469625275202338613260052994906271951255641046291596}{1263097401808916872832294340198707312129998554925096450201} a^{9} - \frac{625954408367154253117137050818050717649413371955158964664}{1263097401808916872832294340198707312129998554925096450201} a^{8} + \frac{360502170668774112583955601631891817163739832000733210413}{1263097401808916872832294340198707312129998554925096450201} a^{7} - \frac{184529770022064950703282688632726066582634368884219830945}{1263097401808916872832294340198707312129998554925096450201} a^{6} + \frac{543382195241048893048611280359002720234459991450263939554}{1263097401808916872832294340198707312129998554925096450201} a^{5} - \frac{299976310747767545512124768546931251954192252353151487853}{1263097401808916872832294340198707312129998554925096450201} a^{4} - \frac{331515074012688570847614050786765451679616674366218045871}{1263097401808916872832294340198707312129998554925096450201} a^{3} - \frac{570330037039261305466644333594925329929558315896536974302}{1263097401808916872832294340198707312129998554925096450201} a^{2} - \frac{478547245106613053258084286111948041748130660013283887576}{1263097401808916872832294340198707312129998554925096450201} a + \frac{569317583632454477764868389381537932341828374634285986997}{1263097401808916872832294340198707312129998554925096450201}$
Class group and class number
$C_{22}\times C_{5764}$, which has order $126808$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1415140.16249 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-1155}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-15}, \sqrt{77})\), \(\Q(\zeta_{11})^+\), 10.10.39630026842637.1, 10.0.30094051633627471875.1, 10.0.162778775259375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||