Normalized defining polynomial
\( x^{20} - 8 x^{19} + 97 x^{18} - 556 x^{17} + 4129 x^{16} - 18820 x^{15} + 106164 x^{14} - 399434 x^{13} + 1850084 x^{12} - 5814310 x^{11} + 22954306 x^{10} - 59959174 x^{9} + 206034873 x^{8} - 437116790 x^{7} + 1325598923 x^{6} - 2170254966 x^{5} + 5878132623 x^{4} - 6654062822 x^{3} + 16343976550 x^{2} - 9593112870 x + 21859650901 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(905651943727436308698404364703916015625=3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1155=3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1155}(1,·)$, $\chi_{1155}(1154,·)$, $\chi_{1155}(454,·)$, $\chi_{1155}(841,·)$, $\chi_{1155}(524,·)$, $\chi_{1155}(526,·)$, $\chi_{1155}(596,·)$, $\chi_{1155}(664,·)$, $\chi_{1155}(281,·)$, $\chi_{1155}(734,·)$, $\chi_{1155}(1121,·)$, $\chi_{1155}(34,·)$, $\chi_{1155}(421,·)$, $\chi_{1155}(874,·)$, $\chi_{1155}(491,·)$, $\chi_{1155}(559,·)$, $\chi_{1155}(629,·)$, $\chi_{1155}(631,·)$, $\chi_{1155}(314,·)$, $\chi_{1155}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{19} + \frac{28673975021521432647520091209456077986551711712407819726337404953205}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{18} - \frac{22939133514464943284131422689007635583656299310388653544123053565849}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{17} - \frac{55792356439734263048152931473413505314659581762637950159868829475027}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{16} - \frac{110714234472212707745090256749691759114616079423706419623153907066302}{599360114335753652601935389546034252405922753567833508155757055268717} a^{15} + \frac{160853617223355050636036402294890821744118591844790338207564139041099}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{14} - \frac{130324203173367628865032956585598416150015749737157050920734548060601}{599360114335753652601935389546034252405922753567833508155757055268717} a^{13} - \frac{6461440231423780925000842010877396266341840629116015269192139834652}{599360114335753652601935389546034252405922753567833508155757055268717} a^{12} - \frac{190512838253445581997664373687370755468499142802924167206772661804577}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{11} + \frac{3836095368194631760111194098861383199702151952667339174154284446771}{26059135405902332721823277806349315321996641459471022093728567620379} a^{10} - \frac{259880610760414222409840015888385257625148666029332416699999557900157}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{9} - \frac{443068377887953512923380157406941869585660669135334407364969070534623}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{8} - \frac{439848283029275208633936484941265345405249888420212757840739363440923}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{7} - \frac{285126800582767000212460081388483816272453621316944589310475674667036}{599360114335753652601935389546034252405922753567833508155757055268717} a^{6} + \frac{351102869736243795316510386168389537887300118140776932687575993252085}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{5} + \frac{280496341956265020384041513374603591228704495837906545084968915794507}{599360114335753652601935389546034252405922753567833508155757055268717} a^{4} - \frac{49379515219821617887157766930666127117664315215818049823847652523197}{1198720228671507305203870779092068504811845507135667016311514110537434} a^{3} + \frac{8451567031893140096400015711732129372939164842312518905887144914189}{52118270811804665443646555612698630643993282918942044187457135240758} a^{2} - \frac{108493819995256308204519196814574711584274861920567992588327997527487}{599360114335753652601935389546034252405922753567833508155757055268717} a - \frac{208074062598567938885759540390250106276729473328631073281541122202374}{599360114335753652601935389546034252405922753567833508155757055268717}$
Class group and class number
$C_{22}\times C_{28820}$, which has order $634040$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-1155}) \), \(\Q(\sqrt{33}, \sqrt{-35})\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\), 10.0.11258530353021875.4, 10.0.30094051633627471875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |