Normalized defining polynomial
\( x^{20} - 8 x^{19} + 129 x^{18} - 760 x^{17} + 6831 x^{16} - 31184 x^{15} + 198784 x^{14} - 712242 x^{13} + 3525510 x^{12} - 9780738 x^{11} + 39686780 x^{10} - 80865818 x^{9} + 288415643 x^{8} - 381754838 x^{7} + 1418808603 x^{6} - 1067010636 x^{5} + 5597098419 x^{4} - 3683482980 x^{3} + 17116956876 x^{2} - 11050362012 x + 20879692219 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(905651943727436308698404364703916015625=3^{10}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1155=3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1155}(64,·)$, $\chi_{1155}(1,·)$, $\chi_{1155}(1154,·)$, $\chi_{1155}(1091,·)$, $\chi_{1155}(776,·)$, $\chi_{1155}(841,·)$, $\chi_{1155}(524,·)$, $\chi_{1155}(461,·)$, $\chi_{1155}(526,·)$, $\chi_{1155}(169,·)$, $\chi_{1155}(986,·)$, $\chi_{1155}(1114,·)$, $\chi_{1155}(734,·)$, $\chi_{1155}(421,·)$, $\chi_{1155}(41,·)$, $\chi_{1155}(629,·)$, $\chi_{1155}(694,·)$, $\chi_{1155}(631,·)$, $\chi_{1155}(314,·)$, $\chi_{1155}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{35242} a^{12} - \frac{1290}{17621} a^{11} - \frac{1700}{17621} a^{10} - \frac{2551}{35242} a^{9} + \frac{1260}{17621} a^{8} - \frac{3619}{17621} a^{7} + \frac{7669}{35242} a^{6} - \frac{633}{17621} a^{5} - \frac{5037}{17621} a^{4} - \frac{15237}{35242} a^{3} + \frac{11867}{35242} a^{2} - \frac{2857}{35242} a + \frac{6378}{17621}$, $\frac{1}{35242} a^{13} + \frac{7}{263} a^{11} + \frac{707}{35242} a^{10} + \frac{5597}{17621} a^{9} + \frac{4917}{17621} a^{8} + \frac{11889}{35242} a^{7} + \frac{6996}{17621} a^{6} + \frac{576}{17621} a^{5} + \frac{2439}{35242} a^{4} - \frac{4763}{35242} a^{3} - \frac{11295}{35242} a^{2} + \frac{3637}{17621} a - \frac{2774}{17621}$, $\frac{1}{35242} a^{14} + \frac{3335}{17621} a^{11} - \frac{3314}{17621} a^{10} + \frac{3108}{17621} a^{9} - \frac{4139}{17621} a^{8} + \frac{765}{17621} a^{7} - \frac{1501}{17621} a^{6} + \frac{4670}{17621} a^{5} - \frac{207}{35242} a^{4} + \frac{8001}{35242} a^{3} - \frac{5121}{35242} a^{2} + \frac{13547}{35242} a - \frac{7}{526}$, $\frac{1}{35242} a^{15} + \frac{1938}{17621} a^{11} + \frac{5989}{35242} a^{10} + \frac{2627}{35242} a^{9} - \frac{14057}{35242} a^{8} - \frac{3541}{17621} a^{7} - \frac{3374}{17621} a^{6} - \frac{14067}{35242} a^{5} + \frac{6354}{17621} a^{4} + \frac{2681}{17621} a^{3} - \frac{1716}{17621} a^{2} - \frac{10201}{35242} a + \frac{9289}{35242}$, $\frac{1}{35242} a^{16} - \frac{2659}{35242} a^{11} + \frac{519}{35242} a^{10} + \frac{5859}{35242} a^{9} - \frac{6284}{17621} a^{8} - \frac{2446}{17621} a^{7} + \frac{5137}{35242} a^{6} - \frac{7078}{17621} a^{5} + \frac{2025}{17621} a^{4} - \frac{5206}{17621} a^{3} - \frac{15883}{35242} a^{2} + \frac{17033}{35242} a + \frac{1135}{17621}$, $\frac{1}{3136538} a^{17} + \frac{11}{3136538} a^{16} + \frac{15}{3136538} a^{15} - \frac{5}{3136538} a^{14} + \frac{21}{1568269} a^{13} - \frac{21}{3136538} a^{12} + \frac{154469}{3136538} a^{11} - \frac{235115}{1568269} a^{10} - \frac{1212441}{3136538} a^{9} + \frac{404623}{3136538} a^{8} - \frac{78801}{3136538} a^{7} + \frac{686687}{3136538} a^{6} + \frac{766371}{1568269} a^{5} + \frac{770668}{1568269} a^{4} + \frac{448341}{3136538} a^{3} - \frac{1493503}{3136538} a^{2} + \frac{324727}{1568269} a - \frac{705672}{1568269}$, $\frac{1}{3136538} a^{18} - \frac{17}{3136538} a^{16} + \frac{4}{1568269} a^{15} + \frac{4}{1568269} a^{14} - \frac{19}{1568269} a^{13} + \frac{9}{1568269} a^{12} + \frac{415171}{3136538} a^{11} + \frac{126219}{1568269} a^{10} + \frac{648836}{1568269} a^{9} - \frac{384435}{1568269} a^{8} - \frac{1416877}{3136538} a^{7} - \frac{458021}{1568269} a^{6} - \frac{788241}{3136538} a^{5} + \frac{370700}{1568269} a^{4} - \frac{38169}{3136538} a^{3} + \frac{168410}{1568269} a^{2} + \frac{692029}{3136538} a - \frac{970743}{3136538}$, $\frac{1}{158702477615679802416958299942221088106022138952672323498} a^{19} + \frac{8981477594118496816560374472132061712673342385676}{79351238807839901208479149971110544053011069476336161749} a^{18} - \frac{14354745483502657864018744554792829183409997414661}{158702477615679802416958299942221088106022138952672323498} a^{17} + \frac{1119647878040969294075074672033208938460730164996350}{79351238807839901208479149971110544053011069476336161749} a^{16} + \frac{1695996615605411456407821038629965432231919244796669}{158702477615679802416958299942221088106022138952672323498} a^{15} + \frac{1406482650283625192028884929872587842117888244702301}{158702477615679802416958299942221088106022138952672323498} a^{14} - \frac{2991437208509311538099057173701525559317650348961}{6900107722420860974650360867053090787218353867507492326} a^{13} - \frac{1380771581971622434976659008284574266621594167487271}{158702477615679802416958299942221088106022138952672323498} a^{12} - \frac{1429682803400749924025746512046898379377794612619596551}{79351238807839901208479149971110544053011069476336161749} a^{11} + \frac{6046115232142667814582514286653550953386976150823539388}{79351238807839901208479149971110544053011069476336161749} a^{10} + \frac{15627731565039132375216670668294306677628826128272082875}{158702477615679802416958299942221088106022138952672323498} a^{9} - \frac{6315764723847891448181849169651662173861541577247478112}{79351238807839901208479149971110544053011069476336161749} a^{8} + \frac{54880260992156452640619170218581200970636336116217985571}{158702477615679802416958299942221088106022138952672323498} a^{7} - \frac{26481515884567365605107604041577356753619930488938610609}{158702477615679802416958299942221088106022138952672323498} a^{6} - \frac{19857573865458765738680379194112135138066489111534258383}{158702477615679802416958299942221088106022138952672323498} a^{5} + \frac{38030226093254694992463183661554171511107522916703281937}{158702477615679802416958299942221088106022138952672323498} a^{4} + \frac{387887013910926569899979490028414122162184007524670108}{3450053861210430487325180433526545393609176933753746163} a^{3} - \frac{5263530180103340558463531693717801522124726276960247635}{158702477615679802416958299942221088106022138952672323498} a^{2} + \frac{58772686446822236649932883113686353251950658883007675427}{158702477615679802416958299942221088106022138952672323498} a + \frac{19308400380797390405797490504310408960282861875524803144}{79351238807839901208479149971110544053011069476336161749}$
Class group and class number
$C_{2}\times C_{22}\times C_{17292}$, which has order $760848$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{-1155}) \), \(\Q(\sqrt{5}, \sqrt{-231})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.9630096522760791.1, 10.0.30094051633627471875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |