Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 105 x^{16} + 228 x^{15} + 90 x^{14} - 540 x^{13} + 45 x^{12} + 770 x^{11} + 1485041 x^{10} - 7426630 x^{9} + 100249155 x^{8} - 356440740 x^{7} + 1091601510 x^{6} - 2058448620 x^{5} + 2806974975 x^{4} - 2584199250 x^{3} + 1570569425 x^{2} - 564365350 x + 551525305475 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90346941218160640000000000000000000000=2^{38}\cdot 5^{22}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13} a^{4} - \frac{2}{13} a^{3} - \frac{1}{13} a^{2} + \frac{2}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{5} - \frac{5}{13} a^{3} + \frac{5}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{6} + \frac{3}{13} a^{3} - \frac{1}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{7} + \frac{6}{13} a^{3} + \frac{2}{13} a^{2} - \frac{1}{13} a - \frac{3}{13}$, $\frac{1}{169} a^{8} - \frac{4}{169} a^{7} + \frac{2}{169} a^{6} - \frac{5}{169} a^{5} - \frac{5}{169} a^{4} + \frac{57}{169} a^{3} + \frac{2}{169} a^{2} - \frac{61}{169} a - \frac{25}{169}$, $\frac{1}{169} a^{9} - \frac{1}{169} a^{7} + \frac{3}{169} a^{6} + \frac{1}{169} a^{5} - \frac{2}{169} a^{4} - \frac{82}{169} a^{3} + \frac{12}{169} a^{2} - \frac{61}{169} a + \frac{43}{169}$, $\frac{1}{845} a^{10} + \frac{5}{169} a^{7} - \frac{2}{169} a^{6} + \frac{19}{845} a^{5} + \frac{6}{169} a^{4} + \frac{32}{169} a^{3} + \frac{9}{169} a^{2} - \frac{1}{169} a + \frac{34}{169}$, $\frac{1}{845} a^{11} + \frac{5}{169} a^{7} - \frac{31}{845} a^{6} + \frac{5}{169} a^{5} + \frac{5}{169} a^{4} + \frac{49}{169} a^{3} + \frac{15}{169} a^{2} - \frac{51}{169} a + \frac{60}{169}$, $\frac{1}{10985} a^{12} - \frac{6}{10985} a^{11} - \frac{4}{10985} a^{10} + \frac{2}{2197} a^{9} - \frac{6}{2197} a^{8} - \frac{331}{10985} a^{7} + \frac{171}{10985} a^{6} - \frac{241}{10985} a^{5} - \frac{84}{2197} a^{4} - \frac{418}{2197} a^{3} - \frac{994}{2197} a^{2} + \frac{893}{2197} a + \frac{437}{2197}$, $\frac{1}{10985} a^{13} - \frac{1}{10985} a^{11} - \frac{1}{10985} a^{10} + \frac{6}{2197} a^{9} + \frac{9}{10985} a^{8} - \frac{12}{2197} a^{7} - \frac{359}{10985} a^{6} + \frac{136}{10985} a^{5} + \frac{14}{2197} a^{4} - \frac{655}{2197} a^{3} + \frac{64}{2197} a^{2} + \frac{660}{2197} a + \frac{776}{2197}$, $\frac{1}{10985} a^{14} + \frac{6}{10985} a^{11} + \frac{19}{10985} a^{9} - \frac{5}{2197} a^{8} + \frac{83}{2197} a^{7} + \frac{294}{10985} a^{6} + \frac{36}{2197} a^{5} - \frac{50}{2197} a^{4} - \frac{315}{2197} a^{3} - \frac{516}{2197} a^{2} + \frac{239}{2197} a + \frac{177}{2197}$, $\frac{1}{10985} a^{15} - \frac{3}{10985} a^{11} + \frac{4}{10985} a^{10} - \frac{4}{2197} a^{9} + \frac{2}{2197} a^{8} + \frac{14}{2197} a^{7} - \frac{222}{10985} a^{6} - \frac{1}{169} a^{5} - \frac{19}{2197} a^{4} + \frac{55}{2197} a^{3} + \frac{119}{2197} a^{2} + \frac{487}{2197} a - \frac{438}{2197}$, $\frac{1}{714025} a^{16} - \frac{8}{714025} a^{15} - \frac{32}{714025} a^{14} - \frac{2}{54925} a^{13} - \frac{1}{142805} a^{12} + \frac{394}{714025} a^{11} - \frac{122}{714025} a^{10} + \frac{452}{714025} a^{9} + \frac{1526}{714025} a^{8} + \frac{5406}{142805} a^{7} + \frac{2508}{142805} a^{6} + \frac{836}{28561} a^{5} + \frac{5212}{142805} a^{4} + \frac{1351}{10985} a^{3} - \frac{6468}{28561} a^{2} + \frac{6219}{28561} a + \frac{4172}{28561}$, $\frac{1}{714025} a^{17} - \frac{31}{714025} a^{15} - \frac{22}{714025} a^{14} - \frac{18}{714025} a^{13} + \frac{29}{714025} a^{12} + \frac{47}{142805} a^{11} - \frac{4}{714025} a^{10} - \frac{1293}{714025} a^{9} - \frac{1582}{714025} a^{8} + \frac{5456}{142805} a^{7} + \frac{1728}{142805} a^{6} + \frac{479}{28561} a^{5} + \frac{4074}{142805} a^{4} - \frac{62591}{142805} a^{3} + \frac{6774}{28561} a^{2} + \frac{948}{2197} a - \frac{2322}{28561}$, $\frac{1}{329231944845781380491401097525} a^{18} - \frac{9}{329231944845781380491401097525} a^{17} + \frac{127165743541155887892128}{329231944845781380491401097525} a^{16} - \frac{203465189665849420627364}{65846388969156276098280219505} a^{15} - \frac{594382777810662396869016}{25325534218906260037800084425} a^{14} + \frac{11949944050718469194411762}{329231944845781380491401097525} a^{13} - \frac{7490578960556100092034761}{329231944845781380491401097525} a^{12} - \frac{96752036719170608942304668}{329231944845781380491401097525} a^{11} - \frac{11059921347978076713630697}{65846388969156276098280219505} a^{10} - \frac{548523900835540411900698027}{329231944845781380491401097525} a^{9} + \frac{633205760987868054740387572}{329231944845781380491401097525} a^{8} - \frac{122844454099007368326627209}{65846388969156276098280219505} a^{7} - \frac{1324291397580244979285631951}{65846388969156276098280219505} a^{6} + \frac{271438452379244222473772481}{65846388969156276098280219505} a^{5} - \frac{2519809250662604460270103789}{65846388969156276098280219505} a^{4} + \frac{16411144879508467995949227856}{65846388969156276098280219505} a^{3} - \frac{4515934402312351144956242463}{13169277793831255219656043901} a^{2} - \frac{5523087953924789546352015157}{13169277793831255219656043901} a + \frac{2477025156136554701952073933}{13169277793831255219656043901}$, $\frac{1}{250351654636963041173527712844890207225} a^{19} + \frac{76041117}{50070330927392608234705542568978041445} a^{18} - \frac{103165776990599755325490018724726}{250351654636963041173527712844890207225} a^{17} - \frac{126602647152771171701541045740017}{250351654636963041173527712844890207225} a^{16} + \frac{6009269162222154600663371941444227}{250351654636963041173527712844890207225} a^{15} - \frac{5860765696218792758512420833046136}{250351654636963041173527712844890207225} a^{14} - \frac{289683998522054936628275215320014}{10014066185478521646941108513795608289} a^{13} - \frac{1216964146039595887722278419975314}{250351654636963041173527712844890207225} a^{12} - \frac{64216059329574827144626840561322063}{250351654636963041173527712844890207225} a^{11} - \frac{23515883680027888215798384717074812}{250351654636963041173527712844890207225} a^{10} - \frac{5296728140126198823171486258895312}{3851563917491739094977349428382926265} a^{9} - \frac{27313781706263858843292662700510842}{50070330927392608234705542568978041445} a^{8} + \frac{413518955226252836040023797176975226}{50070330927392608234705542568978041445} a^{7} + \frac{1903863407037747003945041613430463672}{50070330927392608234705542568978041445} a^{6} - \frac{692912108915065637677960670855436104}{50070330927392608234705542568978041445} a^{5} + \frac{225618776339995647587992921775036062}{10014066185478521646941108513795608289} a^{4} - \frac{4573247632915341744598316422611289173}{10014066185478521646941108513795608289} a^{3} - \frac{3773058098659764485597610125386477223}{10014066185478521646941108513795608289} a^{2} + \frac{4870320798089471651012514746331918495}{10014066185478521646941108513795608289} a + \frac{3905317139599649762282886784173389598}{10014066185478521646941108513795608289}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{-130}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-26})\), 5.1.50000.1, 10.0.1901020160000000000.1, 10.0.9505100800000000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |