Properties

Label 20.0.89450720359...0000.2
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 5^{35}\cdot 17^{15}$
Root discriminant $395.89$
Ramified primes $2, 5, 17$
Class number $15368136200$ (GRH)
Class group $[2, 7684068100]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![17454472483840, 0, 332169297779200, 0, 183353317216000, 0, 31990547504000, 0, 2339342636800, 0, 89321484320, 0, 1951674800, 0, 24969600, 0, 181560, 0, 680, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 680*x^18 + 181560*x^16 + 24969600*x^14 + 1951674800*x^12 + 89321484320*x^10 + 2339342636800*x^8 + 31990547504000*x^6 + 183353317216000*x^4 + 332169297779200*x^2 + 17454472483840)
 
gp: K = bnfinit(x^20 + 680*x^18 + 181560*x^16 + 24969600*x^14 + 1951674800*x^12 + 89321484320*x^10 + 2339342636800*x^8 + 31990547504000*x^6 + 183353317216000*x^4 + 332169297779200*x^2 + 17454472483840, 1)
 

Normalized defining polynomial

\( x^{20} + 680 x^{18} + 181560 x^{16} + 24969600 x^{14} + 1951674800 x^{12} + 89321484320 x^{10} + 2339342636800 x^{8} + 31990547504000 x^{6} + 183353317216000 x^{4} + 332169297779200 x^{2} + 17454472483840 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8945072035968174353125000000000000000000000000000000=2^{30}\cdot 5^{35}\cdot 17^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $395.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3400=2^{3}\cdot 5^{2}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{3400}(1,·)$, $\chi_{3400}(3013,·)$, $\chi_{3400}(2721,·)$, $\chi_{3400}(2889,·)$, $\chi_{3400}(973,·)$, $\chi_{3400}(3277,·)$, $\chi_{3400}(1361,·)$, $\chi_{3400}(1237,·)$, $\chi_{3400}(2041,·)$, $\chi_{3400}(2333,·)$, $\chi_{3400}(293,·)$, $\chi_{3400}(2209,·)$, $\chi_{3400}(2597,·)$, $\chi_{3400}(849,·)$, $\chi_{3400}(681,·)$, $\chi_{3400}(557,·)$, $\chi_{3400}(1653,·)$, $\chi_{3400}(169,·)$, $\chi_{3400}(1529,·)$, $\chi_{3400}(1917,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{68} a^{4}$, $\frac{1}{68} a^{5}$, $\frac{1}{136} a^{6}$, $\frac{1}{952} a^{7} + \frac{2}{7} a$, $\frac{1}{32368} a^{8} + \frac{3}{14} a^{2}$, $\frac{1}{32368} a^{9} + \frac{3}{14} a^{3}$, $\frac{1}{64736} a^{10} + \frac{1}{238} a^{4}$, $\frac{1}{64736} a^{11} + \frac{1}{238} a^{5}$, $\frac{1}{2201024} a^{12} + \frac{3}{952} a^{6}$, $\frac{1}{2201024} a^{13} + \frac{1}{7} a$, $\frac{1}{215700352} a^{14} - \frac{1}{15407168} a^{12} + \frac{1}{226576} a^{10} + \frac{11}{1586032} a^{8} - \frac{5}{3332} a^{6} - \frac{6}{833} a^{4} - \frac{11}{343} a^{2} - \frac{3}{7}$, $\frac{1}{215700352} a^{15} - \frac{1}{15407168} a^{13} + \frac{1}{226576} a^{11} + \frac{11}{1586032} a^{9} - \frac{3}{6664} a^{7} - \frac{6}{833} a^{5} - \frac{11}{343} a^{3} - \frac{1}{7} a$, $\frac{1}{740715008768} a^{16} - \frac{3}{2723216944} a^{14} + \frac{1}{22884176} a^{12} - \frac{2451}{320378464} a^{10} + \frac{345}{160189232} a^{8} - \frac{2071}{673064} a^{6} - \frac{6325}{1177862} a^{4} + \frac{1767}{69286} a^{2} + \frac{233}{707}$, $\frac{1}{740715008768} a^{17} - \frac{3}{2723216944} a^{15} + \frac{1}{22884176} a^{13} - \frac{2451}{320378464} a^{11} + \frac{345}{160189232} a^{9} + \frac{25}{336532} a^{7} - \frac{6325}{1177862} a^{5} + \frac{1767}{69286} a^{3} + \frac{132}{707} a$, $\frac{1}{244942982005569563616334336} a^{18} - \frac{8337329642421}{15308936375348097726020896} a^{16} + \frac{7016538840383035}{3602102676552493582593152} a^{14} - \frac{246162546423674863}{1801051338276246791296576} a^{12} - \frac{129429256266235671}{52972098184595493861664} a^{10} + \frac{100797270551658313}{13243024546148873465416} a^{8} + \frac{25019729895427101}{45823614346535894344} a^{6} + \frac{255314247292880572}{97375180486388775481} a^{4} - \frac{1341950508756782847}{5727951793316986793} a^{2} + \frac{39466456267633324}{116896975373816057}$, $\frac{1}{1714600874038986945314340352} a^{19} - \frac{8337329642421}{107162554627436684082146272} a^{17} - \frac{2420757267540529}{6303679683966863769538016} a^{15} - \frac{2584102053899996003}{12607359367933727539076032} a^{13} + \frac{522903318959067353}{92701171823042114257912} a^{11} + \frac{1236367888468728581}{92701171823042114257912} a^{9} - \frac{42252493273003511}{5453010107237771426936} a^{7} - \frac{7087674904712282561}{1363252526809442856734} a^{5} - \frac{6407904661565134367}{80191325106437815102} a^{3} + \frac{89565159999268777}{818278827616712399} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{7684068100}$, which has order $15368136200$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 423245425.59528744 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{85}) \), 4.0.39304000.1, 5.5.390625.1, 10.10.1083264923095703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ $20$ $20$ R ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ $20$ $20$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ $20$ $20$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
17Data not computed