Normalized defining polynomial
\( x^{20} - 6 x^{19} - x^{18} + 74 x^{17} - 83 x^{16} - 408 x^{15} + 860 x^{14} + 572 x^{13} - 1375 x^{12} - 6690 x^{11} + 21065 x^{10} - 24252 x^{9} + 30228 x^{8} - 73634 x^{7} + 184343 x^{6} - 315514 x^{5} + 483947 x^{4} - 450102 x^{3} + 380763 x^{2} - 164600 x + 108019 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(89224910880483379681166705557504=2^{20}\cdot 11^{16}\cdot 23^{2}\cdot 1871^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23, 1871$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{72688886571442833602456302878226167399609160371919185991} a^{19} - \frac{16772915856700940809019802789595701318279165426858638214}{72688886571442833602456302878226167399609160371919185991} a^{18} - \frac{10946076211001416533762762757344968875120023243196848552}{72688886571442833602456302878226167399609160371919185991} a^{17} - \frac{1285757180879337859755713057499708571023210261558988944}{72688886571442833602456302878226167399609160371919185991} a^{16} - \frac{32322883894685817243596625713285852291983373584530285486}{72688886571442833602456302878226167399609160371919185991} a^{15} - \frac{9203756424712026321080423902219342177951987185801388706}{72688886571442833602456302878226167399609160371919185991} a^{14} + \frac{21920329115975632036612821714684293740333237947910072565}{72688886571442833602456302878226167399609160371919185991} a^{13} - \frac{31238462923406508913124893481172442942354038087406613327}{72688886571442833602456302878226167399609160371919185991} a^{12} - \frac{32934949367207942115162529772122554142692152595581582420}{72688886571442833602456302878226167399609160371919185991} a^{11} - \frac{2844142500685286272467683278852160905215411008810939187}{72688886571442833602456302878226167399609160371919185991} a^{10} - \frac{16985261734059710361972577372683148878661173643672829989}{72688886571442833602456302878226167399609160371919185991} a^{9} + \frac{4095458747590444334157442465850318148080770380983250239}{72688886571442833602456302878226167399609160371919185991} a^{8} - \frac{26665354715206485355903884376442450265967462516935919684}{72688886571442833602456302878226167399609160371919185991} a^{7} - \frac{30314038797083463215517455434466514299736805061215169848}{72688886571442833602456302878226167399609160371919185991} a^{6} - \frac{6148040647894890589792121055207067720208758318326759621}{72688886571442833602456302878226167399609160371919185991} a^{5} + \frac{9750697293864505280701716999295306126098854890578681361}{72688886571442833602456302878226167399609160371919185991} a^{4} - \frac{8466530155340304449055927428520240288337650790865861504}{72688886571442833602456302878226167399609160371919185991} a^{3} - \frac{3851234606791293115882486824193588837975134748121405836}{72688886571442833602456302878226167399609160371919185991} a^{2} - \frac{16235532521677475051141041498773922140882255274736248388}{72688886571442833602456302878226167399609160371919185991} a - \frac{2321959945482446046475151324530211703592407077509216364}{72688886571442833602456302878226167399609160371919185991}$
Class group and class number
$C_{2}\times C_{36}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 447363.730538 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 224 conjugacy class representatives for t20n341 are not computed |
| Character table for t20n341 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.401065466351.1, 10.0.9445893863498752.1, 10.10.5048580365312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 1871 | Data not computed | ||||||