Normalized defining polynomial
\( x^{20} + x^{18} + x^{16} - 33 x^{14} + 55 x^{12} + 59 x^{10} + 440 x^{8} - 2112 x^{6} + 512 x^{4} + 4096 x^{2} + 32768 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(883304637884625106516765048832=2^{27}\cdot 7^{10}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{16} a^{7} + \frac{7}{16} a^{5} - \frac{5}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{12} + \frac{1}{64} a^{10} - \frac{1}{64} a^{8} - \frac{9}{64} a^{6} - \frac{5}{64} a^{4} + \frac{3}{8} a^{2}$, $\frac{1}{128} a^{15} + \frac{1}{128} a^{13} + \frac{1}{128} a^{11} - \frac{1}{128} a^{9} - \frac{9}{128} a^{7} - \frac{5}{128} a^{5} - \frac{1}{2} a^{4} - \frac{5}{16} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2048} a^{16} - \frac{7}{2048} a^{14} - \frac{1}{32} a^{13} + \frac{121}{2048} a^{12} - \frac{1}{32} a^{11} + \frac{87}{2048} a^{10} - \frac{1}{32} a^{9} - \frac{65}{2048} a^{8} + \frac{1}{32} a^{7} + \frac{3}{2048} a^{6} + \frac{9}{32} a^{5} + \frac{27}{64} a^{4} + \frac{5}{32} a^{3} - \frac{5}{16} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8192} a^{17} - \frac{7}{8192} a^{15} - \frac{1}{128} a^{14} - \frac{135}{8192} a^{13} - \frac{1}{128} a^{12} + \frac{343}{8192} a^{11} - \frac{1}{128} a^{10} + \frac{703}{8192} a^{9} + \frac{1}{128} a^{8} - \frac{1789}{8192} a^{7} + \frac{9}{128} a^{6} + \frac{19}{256} a^{5} - \frac{59}{128} a^{4} + \frac{21}{64} a^{3} + \frac{5}{16} a^{2} + \frac{3}{16} a$, $\frac{1}{3915776} a^{18} - \frac{279}{3915776} a^{16} - \frac{1}{256} a^{15} - \frac{28951}{3915776} a^{14} - \frac{1}{256} a^{13} + \frac{45255}{3915776} a^{12} - \frac{1}{256} a^{11} - \frac{174513}{3915776} a^{10} - \frac{31}{256} a^{9} + \frac{390675}{3915776} a^{8} + \frac{9}{256} a^{7} + \frac{22515}{244736} a^{6} - \frac{59}{256} a^{5} + \frac{4841}{30592} a^{4} - \frac{15}{32} a^{3} - \frac{3313}{7648} a^{2} - \frac{99}{478}$, $\frac{1}{15663104} a^{19} - \frac{279}{15663104} a^{17} - \frac{28951}{15663104} a^{15} - \frac{1}{128} a^{14} + \frac{45255}{15663104} a^{13} + \frac{7}{128} a^{12} + \frac{804431}{15663104} a^{11} + \frac{7}{128} a^{10} - \frac{588269}{15663104} a^{9} + \frac{9}{128} a^{8} - \frac{222221}{978944} a^{7} + \frac{1}{128} a^{6} - \frac{18103}{122368} a^{5} - \frac{3}{128} a^{4} - \frac{5225}{30592} a^{3} - \frac{1}{2} a^{2} - \frac{99}{1912} a - \frac{1}{2}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7649961.18437 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.392.1, 5.5.6889792.1, 10.0.332284636622848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||