Normalized defining polynomial
\( x^{20} - 20 x^{17} + 565 x^{16} + 276 x^{15} + 13030 x^{14} + 13800 x^{13} + 307790 x^{12} + 386320 x^{11} + 5048464 x^{10} + 4179340 x^{9} + 64575575 x^{8} + 37357000 x^{7} + 607590850 x^{6} + 213099660 x^{5} + 3926504425 x^{4} + 1091979500 x^{3} + 16896886500 x^{2} + 4529591500 x + 35635031225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(88229434783360000000000000000000000000000000000=2^{40}\cdot 5^{34}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $222.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2600=2^{3}\cdot 5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2600}(1,·)$, $\chi_{2600}(1091,·)$, $\chi_{2600}(519,·)$, $\chi_{2600}(521,·)$, $\chi_{2600}(1611,·)$, $\chi_{2600}(1039,·)$, $\chi_{2600}(1041,·)$, $\chi_{2600}(2131,·)$, $\chi_{2600}(469,·)$, $\chi_{2600}(1559,·)$, $\chi_{2600}(1561,·)$, $\chi_{2600}(989,·)$, $\chi_{2600}(2079,·)$, $\chi_{2600}(2081,·)$, $\chi_{2600}(1509,·)$, $\chi_{2600}(2599,·)$, $\chi_{2600}(2029,·)$, $\chi_{2600}(51,·)$, $\chi_{2600}(2549,·)$, $\chi_{2600}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{25} a^{10} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{12}{25} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5}$, $\frac{1}{25} a^{11} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{12}{25} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a$, $\frac{1}{175} a^{12} + \frac{3}{175} a^{11} - \frac{3}{175} a^{10} - \frac{2}{35} a^{9} - \frac{17}{35} a^{8} - \frac{72}{175} a^{7} - \frac{31}{175} a^{6} - \frac{69}{175} a^{5} - \frac{9}{35} a^{4} + \frac{17}{35} a^{2} + \frac{16}{35} a - \frac{6}{35}$, $\frac{1}{175} a^{13} + \frac{2}{175} a^{11} - \frac{1}{175} a^{10} - \frac{11}{35} a^{9} + \frac{43}{175} a^{8} - \frac{12}{35} a^{7} + \frac{31}{175} a^{6} + \frac{22}{175} a^{5} - \frac{8}{35} a^{4} + \frac{17}{35} a^{3} + \frac{9}{35} a - \frac{17}{35}$, $\frac{1}{175} a^{14} + \frac{9}{25} a^{9} + \frac{8}{35} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{7} a^{2} + \frac{1}{7}$, $\frac{1}{1575} a^{15} + \frac{1}{1575} a^{13} + \frac{1}{525} a^{12} + \frac{1}{63} a^{11} - \frac{1}{525} a^{10} - \frac{79}{315} a^{9} + \frac{116}{525} a^{8} + \frac{494}{1575} a^{7} - \frac{67}{315} a^{6} - \frac{493}{1575} a^{5} + \frac{11}{45} a^{4} - \frac{148}{315} a^{3} + \frac{86}{315} a^{2} - \frac{1}{21} a - \frac{1}{45}$, $\frac{1}{1575} a^{16} + \frac{1}{1575} a^{14} + \frac{1}{525} a^{13} - \frac{2}{1575} a^{12} - \frac{1}{75} a^{11} + \frac{1}{1575} a^{10} + \frac{206}{525} a^{9} + \frac{584}{1575} a^{8} - \frac{281}{1575} a^{7} - \frac{412}{1575} a^{6} - \frac{587}{1575} a^{5} + \frac{19}{63} a^{4} + \frac{86}{315} a^{3} + \frac{52}{105} a^{2} + \frac{2}{315} a - \frac{17}{35}$, $\frac{1}{1575} a^{17} + \frac{1}{525} a^{14} - \frac{1}{525} a^{13} + \frac{1}{525} a^{12} - \frac{2}{525} a^{11} - \frac{3}{175} a^{10} + \frac{709}{1575} a^{9} - \frac{719}{1575} a^{8} - \frac{1}{105} a^{7} - \frac{72}{175} a^{6} + \frac{239}{1575} a^{5} - \frac{1}{7} a^{4} - \frac{11}{315} a^{3} + \frac{4}{21} a^{2} - \frac{7}{15} a - \frac{29}{315}$, $\frac{1}{3636254326466879775} a^{18} - \frac{348093977362277}{1212084775488959925} a^{17} - \frac{296345042021447}{3636254326466879775} a^{16} + \frac{144102598790257}{1212084775488959925} a^{15} - \frac{1074162571880998}{727250865293375955} a^{14} + \frac{586099090050872}{1212084775488959925} a^{13} - \frac{288943420532639}{145450173058675191} a^{12} + \frac{1125254999119549}{242416955097791985} a^{11} + \frac{465047467933991}{145450173058675191} a^{10} - \frac{38784853997694268}{727250865293375955} a^{9} + \frac{775402459926477224}{3636254326466879775} a^{8} + \frac{283498980296687854}{3636254326466879775} a^{7} - \frac{818114966651315252}{3636254326466879775} a^{6} - \frac{89734355600951534}{3636254326466879775} a^{5} + \frac{114187754729170357}{242416955097791985} a^{4} + \frac{278489570783966006}{727250865293375955} a^{3} - \frac{7297190206351646}{80805651699263995} a^{2} + \frac{37557506214546508}{80805651699263995} a + \frac{64258221520337623}{242416955097791985}$, $\frac{1}{461989579706452302157936445895784132824602463975} a^{19} - \frac{13017751062629876554488306268}{461989579706452302157936445895784132824602463975} a^{18} - \frac{12878893699017536570902943995096821087356446}{65998511386636043165419492270826304689228923425} a^{17} + \frac{120016762541384467475770198434355946843912252}{461989579706452302157936445895784132824602463975} a^{16} + \frac{47165623173551460514656344584650440659064654}{153996526568817434052645481965261377608200821325} a^{15} - \frac{138423859265297222793993937975052855728592}{262942276440781048467806742114845835415254675} a^{14} + \frac{318556513830693941538439277307171679680902929}{153996526568817434052645481965261377608200821325} a^{13} + \frac{995942515795429053353113378355490421838318834}{461989579706452302157936445895784132824602463975} a^{12} - \frac{944746614643414963576998473582281562756827049}{65998511386636043165419492270826304689228923425} a^{11} - \frac{8490839615227328684765613041605276516191037108}{461989579706452302157936445895784132824602463975} a^{10} - \frac{200682947375869239233566793602645565849407529486}{461989579706452302157936445895784132824602463975} a^{9} - \frac{1812815629599113665572037473863087171999097849}{7333167931848449240602165807869589409914324825} a^{8} + \frac{1770232848429376097544448028660520026424914378}{92397915941290460431587289179156826564920492795} a^{7} + \frac{153741784286657431011570047293907885384738224913}{461989579706452302157936445895784132824602463975} a^{6} - \frac{64778843204566525144884112784680146673080413062}{461989579706452302157936445895784132824602463975} a^{5} + \frac{3580641412143834385795485917296570944666546658}{30799305313763486810529096393052275521640164265} a^{4} - \frac{513895100938665618028336248566078393125749016}{30799305313763486810529096393052275521640164265} a^{3} - \frac{1920369211199224496138776531624878892290847267}{18479583188258092086317457835831365312984098559} a^{2} + \frac{5545045966270354570316490864294011607403379849}{30799305313763486810529096393052275521640164265} a + \frac{1301691043405039177023464568022270427430320411}{13199702277327208633083898454165260937845784685}$
Class group and class number
$C_{20}\times C_{7098060}$, which has order $141961200$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{-65}) \), \(\Q(\sqrt{10}, \sqrt{-26})\), 5.5.390625.1, 10.10.25000000000000000.1, 10.0.1856465000000000000000.3, 10.0.290072656250000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $13$ | 13.10.5.2 | $x^{10} - 57122 x^{2} + 2227758$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 13.10.5.2 | $x^{10} - 57122 x^{2} + 2227758$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |