/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^20 - 10*x^19 + 45*x^18 - 120*x^17 + 200*x^16 - 172*x^15 - 75*x^14 + 475*x^13 - 735*x^12 + 575*x^11 - 30*x^10 - 560*x^9 + 905*x^8 - 975*x^7 + 915*x^6 - 794*x^5 + 595*x^4 - 345*x^3 + 150*x^2 - 45*x + 9, 20, 4, [0, 10], 87989866733551025390625, [3, 5], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, 1/3*a^14 - 1/3*a^13 - 1/3*a^12 + 1/3*a^11 - 1/3*a^10 - 1/3*a^9 - 1/3*a^8 + 1/3*a^7 - 1/3*a^6 - 1/3*a^5 - 1/3*a^4 + 1/3*a^3 + 1/3*a^2, 1/21*a^15 + 1/7*a^14 - 8/21*a^13 + 1/7*a^12 + 3/7*a^11 - 2/21*a^10 + 1/21*a^9 + 1/7*a^8 + 3/7*a^7 + 4/21*a^6 - 2/21*a^5 + 3/7*a^4 + 2/21*a^3 - 5/21*a^2 + 3/7*a + 1/7, 1/21*a^16 - 1/7*a^14 - 8/21*a^13 + 1/3*a^12 + 2/7*a^11 - 1/3*a^10 + 1/3*a^9 + 1/3*a^8 - 3/7*a^7 - 1/3*a^6 + 1/21*a^5 + 1/7*a^4 + 1/7*a^3 - 4/21*a^2 - 1/7*a - 3/7, 1/21*a^17 + 1/21*a^14 + 4/21*a^13 - 2/7*a^12 - 1/21*a^11 + 1/21*a^10 + 10/21*a^9 - 1/21*a^7 - 8/21*a^6 - 1/7*a^5 + 3/7*a^4 + 2/21*a^3 + 1/7*a^2 - 1/7*a + 3/7, 1/777483*a^18 - 1/86387*a^17 + 4363/259161*a^16 + 729/86387*a^15 - 114736/777483*a^14 + 26830/111069*a^13 - 14723/111069*a^12 - 355762/777483*a^11 + 359435/777483*a^10 - 346946/777483*a^9 - 233504/777483*a^8 - 81727/777483*a^7 - 238151/777483*a^6 + 55249/777483*a^5 - 299897/777483*a^4 + 26696/777483*a^3 - 42516/86387*a^2 + 21233/259161*a + 12289/86387, 1/59866191*a^19 + 29/59866191*a^18 - 9232/407253*a^17 - 263954/19955397*a^16 - 91843/8552313*a^15 - 5282848/59866191*a^14 + 666383/2850771*a^13 - 21709913/59866191*a^12 + 8077903/19955397*a^11 + 543730/5442381*a^10 + 2105269/19955397*a^9 + 496906/1392237*a^8 + 2172650/59866191*a^7 + 328018/2850771*a^6 + 4561316/19955397*a^5 - 10739999/59866191*a^4 - 16620914/59866191*a^3 + 5725964/19955397*a^2 - 6857063/19955397*a - 2371448/6651799], 0, 1, [], 0, [ (488)/(18963)*a^(18) - (488)/(2107)*a^(17) + (1863)/(2107)*a^(16) - (11528)/(6321)*a^(15) + (35467)/(18963)*a^(14) + (1217)/(2709)*a^(13) - (12295)/(2709)*a^(12) + (126247)/(18963)*a^(11) - (73001)/(18963)*a^(10) - (26947)/(18963)*a^(9) + (87209)/(18963)*a^(8) - (93887)/(18963)*a^(7) + (107675)/(18963)*a^(6) - (142033)/(18963)*a^(5) + (148469)/(18963)*a^(4) - (104681)/(18963)*a^(3) + (17222)/(6321)*a^(2) - (5639)/(6321)*a + (1714)/(2107) , (2100067)/(59866191)*a^(19) - (18618806)/(59866191)*a^(18) + (3425270)/(2850771)*a^(17) - (51125290)/(19955397)*a^(16) + (22748267)/(8552313)*a^(15) + (23562613)/(19955397)*a^(14) - (73448467)/(8552313)*a^(13) + (261529591)/(19955397)*a^(12) - (427108859)/(59866191)*a^(11) - (13371608)/(1814127)*a^(10) + (1090357538)/(59866191)*a^(9) - (108958429)/(6651799)*a^(8) + (146839276)/(19955397)*a^(7) - (4772857)/(8552313)*a^(6) - (14038942)/(59866191)*a^(5) + (34743188)/(19955397)*a^(4) - (223659682)/(59866191)*a^(3) + (125014025)/(19955397)*a^(2) - (67600321)/(19955397)*a + (6536053)/(6651799) , (1879268)/(59866191)*a^(19) - (17734774)/(59866191)*a^(18) + (72478)/(58179)*a^(17) - (60642955)/(19955397)*a^(16) + (36832750)/(8552313)*a^(15) - (36790433)/(19955397)*a^(14) - (53055014)/(8552313)*a^(13) + (308724043)/(19955397)*a^(12) - (980248195)/(59866191)*a^(11) + (7238143)/(1814127)*a^(10) + (838868554)/(59866191)*a^(9) - (469201585)/(19955397)*a^(8) + (400316491)/(19955397)*a^(7) - (96833696)/(8552313)*a^(6) + (386073739)/(59866191)*a^(5) - (98067817)/(19955397)*a^(4) + (147657652)/(59866191)*a^(3) + (16152624)/(6651799)*a^(2) - (75839810)/(19955397)*a + (15190394)/(6651799) , (77188)/(777483)*a^(18) - (77188)/(86387)*a^(17) + (303643)/(86387)*a^(16) - (2038648)/(259161)*a^(15) + (7693223)/(777483)*a^(14) - (276539)/(111069)*a^(13) - (1763309)/(111069)*a^(12) + (25651151)/(777483)*a^(11) - (24143818)/(777483)*a^(10) + (5332192)/(777483)*a^(9) + (17749240)/(777483)*a^(8) - (30094405)/(777483)*a^(7) + (30767524)/(777483)*a^(6) - (26479934)/(777483)*a^(5) + (23912857)/(777483)*a^(4) - (19674499)/(777483)*a^(3) + (3634072)/(259161)*a^(2) - (1112050)/(259161)*a + (108118)/(86387) , (5403911)/(59866191)*a^(19) - (49586521)/(59866191)*a^(18) + (9768238)/(2850771)*a^(17) - (168256525)/(19955397)*a^(16) + (109347892)/(8552313)*a^(15) - (58830286)/(6651799)*a^(14) - (76575062)/(8552313)*a^(13) + (671899715)/(19955397)*a^(12) - (2745685237)/(59866191)*a^(11) + (18554569)/(604709)*a^(10) + (8153476)/(1392237)*a^(9) - (272104696)/(6651799)*a^(8) + (391947966)/(6651799)*a^(7) - (12331030)/(208593)*a^(6) + (3255549538)/(59866191)*a^(5) - (300660658)/(6651799)*a^(4) + (1978876336)/(59866191)*a^(3) - (327992926)/(19955397)*a^(2) + (124248349)/(19955397)*a - (6756852)/(6651799) , (1325092)/(59866191)*a^(19) - (301978)/(19955397)*a^(18) - (2483735)/(2850771)*a^(17) + (94794082)/(19955397)*a^(16) - (2444314)/(198891)*a^(15) + (1035959803)/(59866191)*a^(14) - (56548259)/(8552313)*a^(13) - (1484338246)/(59866191)*a^(12) + (3358877099)/(59866191)*a^(11) - (289578427)/(5442381)*a^(10) + (542250442)/(59866191)*a^(9) + (2568124562)/(59866191)*a^(8) - (3861547400)/(59866191)*a^(7) + (502783177)/(8552313)*a^(6) - (2834526203)/(59866191)*a^(5) + (2647277210)/(59866191)*a^(4) - (728329858)/(19955397)*a^(3) + (374371292)/(19955397)*a^(2) - (16994445)/(6651799)*a - (5262101)/(6651799) , (120079)/(2850771)*a^(19) - (387433)/(1221759)*a^(18) + (2841407)/(2850771)*a^(17) - (693274)/(407253)*a^(16) + (4052228)/(2850771)*a^(15) + (4880203)/(8552313)*a^(14) - (91844)/(29799)*a^(13) + (33612611)/(8552313)*a^(12) - (27206321)/(8552313)*a^(11) + (282038)/(111069)*a^(10) - (10945798)/(8552313)*a^(9) - (19927132)/(8552313)*a^(8) + (73904443)/(8552313)*a^(7) - (101090026)/(8552313)*a^(6) + (13890752)/(1221759)*a^(5) - (62643283)/(8552313)*a^(4) + (144203)/(29799)*a^(3) - (1898929)/(407253)*a^(2) + (10034527)/(2850771)*a - (155943)/(950257) , (4023787)/(59866191)*a^(19) - (14542804)/(19955397)*a^(18) + (9929060)/(2850771)*a^(17) - (191464585)/(19955397)*a^(16) + (136756133)/(8552313)*a^(15) - (759101279)/(59866191)*a^(14) - (1921286)/(198891)*a^(13) + (2580860270)/(59866191)*a^(12) - (82743541)/(1392237)*a^(11) + (198796532)/(5442381)*a^(10) + (809596408)/(59866191)*a^(9) - (3303922000)/(59866191)*a^(8) + (4122789019)/(59866191)*a^(7) - (555036569)/(8552313)*a^(6) + (3488266765)/(59866191)*a^(5) - (3050405434)/(59866191)*a^(4) + (711712028)/(19955397)*a^(3) - (324400102)/(19955397)*a^(2) + (34279849)/(6651799)*a - (5022860)/(6651799) , (11178140)/(59866191)*a^(19) - (103165229)/(59866191)*a^(18) + (6663417)/(950257)*a^(17) - (109098854)/(6651799)*a^(16) + (189143788)/(8552313)*a^(15) - (514289990)/(59866191)*a^(14) - (28840498)/(950257)*a^(13) + (4271260139)/(59866191)*a^(12) - (1466167660)/(19955397)*a^(11) + (124611674)/(5442381)*a^(10) + (926622142)/(19955397)*a^(9) - (5216636575)/(59866191)*a^(8) + (5427577285)/(59866191)*a^(7) - (734770)/(9471)*a^(6) + (1363919134)/(19955397)*a^(5) - (3315445774)/(59866191)*a^(4) + (1998203954)/(59866191)*a^(3) - (206620072)/(19955397)*a^(2) + (28329431)/(19955397)*a + (4295961)/(6651799) ], 4953.47319009, [[x^2 - x + 4, 1], [x^2 - x - 1, 1], [x^2 - x + 1, 1], [x^4 - x^3 + 2*x^2 + x + 1, 1], [x^5 - 5*x^2 - 3, 5], [x^10 + 5*x^8 + 15*x^6 + 20*x^4 + 25*x^2 + 15, 1], [x^10 - 5*x^7 + 10*x^6 + 9*x^5 - 10*x^4 - 5*x^3 - 1, 5], [x^10 - 10*x^7 + 3*x^5 + 25*x^4 - 15*x^2 + 9, 5]]]