Normalized defining polynomial
\( x^{20} - 10 x^{19} + 45 x^{18} - 120 x^{17} + 200 x^{16} - 172 x^{15} - 75 x^{14} + 475 x^{13} - 735 x^{12} + 575 x^{11} - 30 x^{10} - 560 x^{9} + 905 x^{8} - 975 x^{7} + 915 x^{6} - 794 x^{5} + 595 x^{4} - 345 x^{3} + 150 x^{2} - 45 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87989866733551025390625=3^{10}\cdot 5^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{21} a^{15} + \frac{1}{7} a^{14} - \frac{8}{21} a^{13} + \frac{1}{7} a^{12} + \frac{3}{7} a^{11} - \frac{2}{21} a^{10} + \frac{1}{21} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{4}{21} a^{6} - \frac{2}{21} a^{5} + \frac{3}{7} a^{4} + \frac{2}{21} a^{3} - \frac{5}{21} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{21} a^{16} - \frac{1}{7} a^{14} - \frac{8}{21} a^{13} + \frac{1}{3} a^{12} + \frac{2}{7} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{3}{7} a^{7} - \frac{1}{3} a^{6} + \frac{1}{21} a^{5} + \frac{1}{7} a^{4} + \frac{1}{7} a^{3} - \frac{4}{21} a^{2} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{21} a^{17} + \frac{1}{21} a^{14} + \frac{4}{21} a^{13} - \frac{2}{7} a^{12} - \frac{1}{21} a^{11} + \frac{1}{21} a^{10} + \frac{10}{21} a^{9} - \frac{1}{21} a^{7} - \frac{8}{21} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{2}{21} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{777483} a^{18} - \frac{1}{86387} a^{17} + \frac{4363}{259161} a^{16} + \frac{729}{86387} a^{15} - \frac{114736}{777483} a^{14} + \frac{26830}{111069} a^{13} - \frac{14723}{111069} a^{12} - \frac{355762}{777483} a^{11} + \frac{359435}{777483} a^{10} - \frac{346946}{777483} a^{9} - \frac{233504}{777483} a^{8} - \frac{81727}{777483} a^{7} - \frac{238151}{777483} a^{6} + \frac{55249}{777483} a^{5} - \frac{299897}{777483} a^{4} + \frac{26696}{777483} a^{3} - \frac{42516}{86387} a^{2} + \frac{21233}{259161} a + \frac{12289}{86387}$, $\frac{1}{59866191} a^{19} + \frac{29}{59866191} a^{18} - \frac{9232}{407253} a^{17} - \frac{263954}{19955397} a^{16} - \frac{91843}{8552313} a^{15} - \frac{5282848}{59866191} a^{14} + \frac{666383}{2850771} a^{13} - \frac{21709913}{59866191} a^{12} + \frac{8077903}{19955397} a^{11} + \frac{543730}{5442381} a^{10} + \frac{2105269}{19955397} a^{9} + \frac{496906}{1392237} a^{8} + \frac{2172650}{59866191} a^{7} + \frac{328018}{2850771} a^{6} + \frac{4561316}{19955397} a^{5} - \frac{10739999}{59866191} a^{4} - \frac{16620914}{59866191} a^{3} + \frac{5725964}{19955397} a^{2} - \frac{6857063}{19955397} a - \frac{2371448}{6651799}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{16560}{154693} a^{19} - \frac{157320}{154693} a^{18} + \frac{284890}{66297} a^{17} - \frac{4915975}{464079} a^{16} + \frac{149032}{9471} a^{15} - \frac{4589680}{464079} a^{14} - \frac{292610}{22099} a^{13} + \frac{19921915}{464079} a^{12} - \frac{8377410}{154693} a^{11} + \frac{1350508}{42189} a^{10} + \frac{1772335}{154693} a^{9} - \frac{22875590}{464079} a^{8} + \frac{10490570}{154693} a^{7} - \frac{4629385}{66297} a^{6} + \frac{30140738}{464079} a^{5} - \frac{24958210}{464079} a^{4} + \frac{17204465}{464079} a^{3} - \frac{2910020}{154693} a^{2} + \frac{1233810}{154693} a - \frac{211840}{154693} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4953.47319009 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 5.1.140625.1 x5, 10.0.296630859375.1, 10.2.98876953125.1 x5, 10.0.59326171875.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||